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EVALUATION

This effort is a generally successful attempt to strenghten
the theoretical foundation of estimative intelligence by identi-
fying where quantitative uncertainties in data can be validly
developed with currently available procedures.

In general, the fundamental assumptions underlying classical
statistics do not hold in intelligence data analysis, and classic-
al-estimates of uncertainty are generally inapplicable to finished
intelligence. This is a serious well-documented deficiency since
intelligence consumers need information concerning uncertainty to
effectively use estimates in crisis management, strategic planning,
tactical planning, gaming & simulation and intelligence quality
control.

The effort provides effective media for identifying and
communicating the-total uncertainty for specific intelligence
estimates given the uncertainties of the data making up the es-
timate can be assessed. It also addresses communicating the
significance of that uncertainty to decision makers. The results
of this effort are being included in orientation classed for de-
fense intelligence estimators.

Valid approaches to expressing uncertainty in terms of
possibility theory and as non-parametric statistics are briefly
discussed. Further development of these approaches requires
basic theoretical research beyond the scope of the contract.
Support to pursue fundamental research identified by the contract
is being requested from AFOSR. The research is fundamental to
improving intelligence data analytical methodology and credibi-
lity.

PATRICIA MN.
Project Engineer
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SECTION 1

INTRODUCTION

"Estimating: An effort to appraise and analyze the future possibilities

or courses of action in a situation under study and the various results or

consequences of foreign or United States actions relating to that situation.

This analysis of such a foreign situation would consider its development and

trends to identify its major elements, interpret the significance of the

situation, and evaluate the future possibilities and prospective results of

various actions which might be taken ..." (Lyman Kirkpatrick, The Intelli-

gence Community.)

Research to be reported here is intended to identify the disparate

sources of uncertainty affecting defense estimates, define quantified measures

of the uncertainties whenever possible, aggregate the uncertainties into total

measures of uncertainty for projections, and provide effective media for

communicating the total uncertainty and its significance to national decision

makers.

Work was performed under contract #F30602-78-C-0291 and monitored by

RADC/IRDA. It draws on research performed in the development of the Trend and

Error Analysis Methodology System (TEAMS) under contract #F30602-76-C-0206.

The effort was intended to identify, quantify, aggregate and communicate

uncertainties in defense estimative intelligence projections in a form which

1-1
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is understandable to estimators with minimum technical and statistical back-

ground. The aggregated output uncertainty measures and the media used to

present them are designed to be meaningful at the level of the national deci-

sion maker. Media are provided for the training of non-technically oriented

estimators to the level required to use and understand the developed method-

ologies. The scope of this effort includes uncertainties associated with

current methods of making defense intelligence estimates; it does not include

the development of improved estimative intelligence methodologies.

Research is based upon three types of investigation:

1. Interviews conducted with Defense Intelligence Agency Directorate

of Estimates (DIA/DE) personnel specifically for this project and

for the preceding TEAMS project.

2. A review of research documents dealing with strategic intelligence

methods, statistical decision analysis, and related areas, as listed

in the bibliography provided as Appendix A to this report.

3. The application of techniques described in the literature to the

estimative intelligence methods as defined by the interviews.

The purpose of this Final Report is to review and present the research

which constitutes this effort. Two additional products are provided:

-* 1-2
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1. A Training Manual for the use of DIA/DE in teaching methods for

quantifying, aggregating and communicating uncertainties in estima-

tive intelligence products. A copy of this Training Manual is

included under separate cover as Appendix B of the Final Report.

2. Computer programs for the demonstration of techniques for aggregat-

ing and communicating uncertainties. These are being provided in

machine-readable form to DIA/DE, together with appropriate documen-

tation, as a separate data item.

1.1. SCOPE OF THIS REPORT

The quotation with which this report begins suggests the scope of estima-

tive intelligence: appraisal and analysis of future possibilities, and of the

results of prospective actions. Although it emphasizes future developments,

estimative intelligence shares its primary goal with other types of strategic

intelligence: determination of the capabilities and intentions of a prospec-
tive adversary. Thus, an estimate is correct when it identifies the capabili-

ties and intentions correctly, and incorrect when it does not.

This interpretation of the correctness of an estimate is not the one

which is normally used. In most evaluations of intellegence estimates, they

have been treated as predictions of future events and future force levels,

rather than as appraisals of capabilities and intentions. When a prediction

fails to come true, then it can be regarded as an error; but an estimate may

have correctly identified the intentions and capabilities of an adversary,

1-3
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only to find that political, economic, technical, or other changes have modi-

fied those intentions and capabilities before they could be realized. Ideal-

ly, then, evaluations of estimative intelligence should be based on the cor-

rectness with which capabilities and intentions have been identified.

Over the past five years, there has been increasing interest in evaluat-

ing the quality of DE's work, with particular emphasis on projections of

future force levels for the USSR. Critiques of these projections have fre-

quently centered around underestimates of the size and composition of Soviet

ballistic missile forces. A series of underestimates was identified and

widely reported in the popular press. While there is no doubt that underesti-

mates and overestimates should be identified and eliminated, it is also impor-

tant to develop better methods for indicating the uncertainty present in DE's

projections, to prevent misinterpretations of the degree of confidence with

which they are asserted. Estimates should not only identify the force levels

as accurately as possible; they should indicate the degree of uncertainty

remaining in the estimate. It is to this latter problem that the research

reported here was directed.

Estimators have been asked to provide numerical measures of the degree of

uncertainty present in projections of two types: (1) a range of values,

generally including a high, low, and best estimate, such that roughly 75

L. percent of the actual values will be found to lie between the high and the low

estimate; and (2) a numerical estimate of the probability that a projected

event will occur.

1-4
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Interviews with estimators indicated that they found it extremely diffi-

cult to describe the methods that they used in obtaining these numerical

measures of uncertainty. They frequently spoke in terms of "intuition,".which

seemed to represent nothing more than guesswork. Figures were plucked out of

the air, or they were inserted simply to fill the blanks in required reports.

Estimators felt that there was little reason to develop better methods since,

in their opinion, intelligence consumers made little or no use of the uncer-

tainty figures that were included in their reports.

Measures of uncertainty are nevertheless of importance to the consumers.

Decisions concerning the commitment of U.S. funds depend crucially on expected

levels of development in the USSR and elsewhere. Composition and deployment

of U.S. forces must be planned to meet an expected threat; the realism of such

plans will depend on the probabilities attached to various potential threats.

In short, in every area in which DIA estimates are used, some recognition of

the uncertainties present in these estimates is required.

This report is therefore intended to provide methods which should prove

more reliable and consistent than unguided intuition. In addition, methods

for combining or aggregating uncertainties from a variety of sources are

described. Techniques for communicating uncertainties to the consumers of

estimative intelligence are also included.

This Final Report consists of twelve sections, as follows:

1. Introduction.
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2. Background.

3. The uses of uncertainty. The role that uncertainty plays in the use

of estimates.

4. Uncertainty and probability. A discussion of the meaning of uncer-

teainty in terms of probabilities.

5. Estimative intelligence methods. A detailed discussion of methods

in use at DE for the production of finished estimates.

6. Statistical methods. A review of decision analytic (Bayesian) and

other methods which have been suggested for use in estimating uncer-

tainties.

7. Probability assessments. Methods for obtaining probability assess-

ments for use in reporting projections.

8. Calibrating snzertainty measures. Methods for assuring the consis-

tency and correctness of probability estimates.

9. Detecting and eliminating bias. Some of the frequent sources of

error in probability estimates.

10. Computer-assisted estimations of uncertainty. A description of some

programs for estimating and aggregating uncertainties.
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11. Communicating uncertainty. Methods for comunicating uncertainty to

the user.

12. Summary and recommendations.

Appendix A. Bibliography.

Appendix B. Training Manual (separately bound).

Appendix C. Computer-based systems for aggregating uncertainties.

Appendix D. Computer demonstration systems (separately bound).

1
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SECTION 2

BACKGROUND

"Intelligence does not claim infallibility for its prophecies. Intelli-

gence merely holds that the answer which it gives is its most deeply and

objectively based and carefully considered estimate." (Sherman Kent, Strate-

Sic Intelligence for American World Policy.)

In common with current and basic intelligence, estimative intelligence

attempts to discern the capabilities and attitudes of a potential adversary.

Estimative intelligence differs from other forms of strategic intelligence in

that it projects these capabilities into the future. Because future events

cannot be predicted in detail - in part because of the unpredictable nature of

human decisions and in part because of our human limitations upon processing

the quantity of data that are potentially relevant to future events - a vari-

able and unpredictable element of uncertainty is present in intelligence

estimates.

Since these estimates nevertheless play an essential role in U.S. strate-

gic planning, the degree of uncertainty in the estimates must be conveyed, in

some fashion, to the eventual user. For this purpose, a large number of

* different techniques have been employed. For example, National Intelligence

Estimates (NIE) and Defense Intelligence Estimates (DIE) have contained such

words and phrases as these:"
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it is likely (or unlikely) that

it is possible

the possibility of

the likelihood of

probable

they probably believe

not likely

Such phrases, which appeared in an NIE in 1968, were intended to convey

to the consumer the uncertain character of the projections contained in the

estimate.

In 1976, more precise forms for expressing uncertainty were introduced

into DIA/DE products, using such phrases as the following:

60 percent probability

80 percent likelihood

a 70 percent chance

Such expressions were applied to specific events, such as changes in military

policy.

In some estimates issued during 1976, a colored sheet containing the

following statement was inserted:

2-2
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"[Numeric forms are used] to convey to the reader this degree of proba-

bility more precisely than is possible in the traditional verbal form.

Our confidence in the supporting evidence is taken into account in making

these quantifications. . . . All efforts at quantifying estimates are

highly subjective, however, and should be treated with reserve."

At about the same time, a DIE contained the following notice:

"Completeness and Reliability of Evidence

"The evidence . . . is based on a wide variety of sources and is consid-

ered generally complete and reliable, although not necessarily definitive

"There is as yet very little reliable evidence . . . The data base . . .

is considered sufficiently reliable to support the judgments made . . .

Throughout the estimate, both quantitative and verbal expressions were

included:
4

there is a 75 percent chance that

except in the unlikely event that

it is possible that

it would probably react

we see no evidence of

it appears that

the possibility of . . . is ever present

i"
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[it] would probably

[it] could provide

we do not believe

In other words, both numeric and verbal qualifications frequently ap-

peared in DIA estimates, even after the numeric forms had been introduced; DE

felt it necessary to point out that the numeric qualifications were "highly

subjective"; other caviats were included to assist the consumer in assessing

the degree of confidence appropriate for the estimate.

The Defense Intelligence Projections for Planning (DIPP) have, for sev-

eral years, provided another means for communicating uncertainty to the user.

Numeric estimates frequently (but not invariably) include a "high," "low," and

"best" value. These are selected in such a way that the true value will be

found in the indicated range approximately 75 percent of the time. Although

no attempt is made to specify the probability distribution over this range,

the spread (from low to high) is intended to assist the user in determining

the uncertainty present.

Several other methods for communicating uncertainty are reviewed in

subsection 5.10. But while DIA has made an effort to communicate the degree

of uncertainty to be attached to estimates, such problems as the following

were reported to us by DE personnel:

o The numerical estimates of probabilities, generally reported as

percentages, were indeed "highly subjective." No clearly-defined

methods for obtaining the required numbers have been specified.
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0 There was little motivation to improve the quality of the proba-

bility figures, since they were generally ignored by intelligence

consumers. Consumers appear to take the best estimates (or occa-

sionally the high estimates) without any apparent regard for the

uncertainty attached to them.

A vicious circle thus appears to have developed, in which neither the

estimators nor the consumers take the probabilities very seriously. Estima-

tors tend to regard them as mere guesses, and consumers tend to ignore them.

The goal of this project, then. was to review the methods that DIA-DE

uses in preparing estimates, and to locate the types of uncertainties that

enter into them. Methods for combining or aggregating these uncertainties

were to be proposed. Finally, more effective methods for coumunicating uncer-

tainties to intelligence consumers would be developed.
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SECTION 3

THE USES OF UNCERTAINTY

"The main task for modern philosophy is to teach man to live without

certainty and yet not to be paralyzed by hesitation." (Bertrand Russell,

History of Western Philosoph3.)

The first two sections have noted some of the difficulties that intelli-

gence producers have experienced in comunicating the uncertainty of their

estimates. In this section we ask: Why is it important to communicate uncer-

tainty to the intelligence consumer? What purpose does it serve -- or (since

it is frequently ignored) what purpose should it serve?

The role of the intelligence consumer is a little like that of a traveler

on a Mississippi riverboat, who finds himself involved in a poker game with a

professional gambler. In this situation he is faced with uncertainties atImany levels:
a Information may be concealed: the riverboat gambler may have cardsI. up his sleeve.

S Information may be falsified: the gambler. may be dealing from the

bottom of the deck.
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o Chance events may affect the outcome: even in a fair game, there is

uncertainty concerning the deal.

o The gambler may change his strategy at any time: part of the

essence of an effective combat posture is its unpredictability.

o All's fair in love, war, and cut-throat gambling: the gambler

cannot be expected to abide by the rules of the game, or by any

subsequent agreement, unless it is to his advantage to do so.

Any reasonable traveler would refuse to take part in a game like this.

But in the context of world affairs, there is no alternative other than to

play; the problem is learning how to play the game well. And in the world

today, we are playing against professional gamblers, who may be expected to

cheat, conceal, and lie whenever they think they can get away with it.

According to the theory of games and decisions, which serves as a back-

ground theory for much of the analysis presented in this report, two major

factors enter into a rational person's decision: the probability of each

expected outcome, and the gain or loss that can be expected for each outcome.

The rational person will choose those actions which will, with greatest proba-

bility, maximize the chances of obtaining a gain or avoiding a loss. Such a

person is willing to take very great risks to obtain a very large gain or to

avoid a large loss; but if the outcome makes little or no difference, then the

rational person will remain indifferent about choices.
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In this context, the intelligence producer has the task of communicating

information to the consumer that will serve as the basis for a rational deci-

sion. Such information can include estimates of the extent and deployment of

enemy forces, assessments of their plans and goals, and other material which

may be relevant to a decision. Because the adversary will attempt to conceal

information or to circulate misleading information, the estimates of the

intelligence producer are subject to error. In the case of estimates like

those of DE, which may be projected for ten or more years into the future, the

possibilities of major changes in enemy policy and in the technology of war-

fare introduce additional elements of uncertainty.

To develop more effective methods of communicating uncertainty to the

consumer, it is essential to begin with the purposes that these methods are

intended to serve. Throughout this report, we assume that the consumer will

use information concerning uncertainty in such ways as the following:

o Strategic planning. DIA estimates for future military developments

in foreign nations are essential for U.S. strategic planning.

Realistic plans require some knowledge of the uncertainty to be

attached to projections. For example, a decision concerning develop-

ment of a major ABM system for the U.S. must include information

concerning not only the nature of prospective Soviet missile

systems, but the probabilities associated with each type of system.

The intelligence consumer must make a judgment concerning the types

of AEM systems, if any, to be developed, and such judgments cannot

* be made rationally without some estimate of the probability of

3-3
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various Soviet missile postures. Uncertainty for such consumers

should be communicated in the form of probabilities for discrete

events, or of probability distributions for quantified estimates.

In this way, the consumer can determine the need for U.S. actions

which will respond to the most likely enemy posture, or to a posture

which is somewhat unlikely but extremely threatening.

o Gaming and Simulation. Estimates may be used as inputs to gaming

programs for training personnel and for simulating hypothetical

military activities. In both types of activity, a numerical proba-

bility is required. For gaming, the probability might be used in

conjunction with a randomizing procedure, such that the given event

or weapon development would have a simulated occurrence with the

specified probability, or with the specified probability distribu-

tion. In the simulation of hypothetical military activities or of

major international developments, the probabilities would be used to

determine the overall probabilities of various outcomes.

o Self-evaluation. Intelligence estimates are always subject to

review, for the purpose of detecting problem areas and for improving

*the quality of estimative methods. Projections containing verbal

phrases like "It is probable that" or "There is some probability

that" are difficult to evaluate for quality control purposes, since

no outcome could show them to be either true or false. Numerical

probabilities, or probability distributions, however, can be evalu-

ated and scored. Scoring rules, like those developed for the TEAMS

3-4
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project, help to show precisely the degree to which a probabilistic

projection is either right or wrong. Even if scoring rules are not

applied, the use of numerical probabilities (rather than verbal

phrases) permits an evaluation of projections to determine which of

them were more or less correct. For example, if you had said that

there is a 90 percent chance that System X would be developed and

deployed by 1980, and if System X was deployed by that date, then

you would be more correct than if you had said that there was a 60

percent or 20 percent chance.

In each of these applications - planning, gaming, and evaluation - we see

that numerical statements of probabilities are more likely to be useful than

verbal statements of uncertainty (like "It is probable that"). Numerical

presentations of uncertainty can take various forms, such as:

o An 80 percent probability.

o A probability of 0.80.

o Odds of 8 to 2.

Since each of these forms can be reduced to the same numerical form for

computation, there is no mathematical reason to choose among them. Experi-

mental evidence suggests that the last form, using odds, may be somewhat

easier for the non-expert to grasp. Throughout this report, however, we will

4J use any of the above forms interchangeably, without attempting to resolve the

subtle nuances of meaning that each conveys.
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It is therefore important to use numerical probabilities in order to

communicate the precise degree of uncertainty in estimates. To say, for

example, "It is completely uncertain whether Primorye class intelligence ships

will have facilities for processing of electronic signatures" could convey

valuable information to the consumer: that these facilities may be installed

on the ships, and that a long-range plan for countering them might appropri-

ately be considered. Nevertheless, it is considerably more useful to the

consumer to convey an accurate measure of your degree of credence by saying

something like "There is a 50 percent probability that the Primorye class

intelligence ships will have facilities for processing electronic signatures."

This assists the consumer in assigning a degree of urgency to the long-range

plan: a 50-percent probability suggests a greater degree of urgency than

would a 10-percent or 20-percent probability. In addition, the numerical

probability could be used in a rigorously-defined mathematical model for such

purposes as cost-benefit analysis, while a purely verbal expression could not.

In recommending the use of numerical probabilities, however, this report

does not make further recommendations concerning estimative methods. No new

methods for developing intelligence estimates are proposed, since these would

be beyond the scope of the research reported here. In particular, this report

deals with the existing, rather informal methods now used by intelligence

estimators. Sections 6 and 10 will, however, provide an introduction to

statistical methods which have been proposed for use in producing and evaluat-

ing estimates.

3-6
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In describing a computer-based study of the future of the Badger bomber,

one person stated the central problem with which we will deal here:

"One would think that by this time everything about the Badger would be

known. Unfortunately, this is not the case. All we know is what we have been

able to physically measure by counting what we saw and heard. The causes of

these phenomena are still unidentified. Hence, predictions of the future are

fuzzy sets relying on the past. The heart of the problem seems to have been

predicti.-ns. Even with the 'certainty' of the past, it has been an uncertain

thing as to how one should apply it to the future." (Thomas H. Murray, "The

Future of the Badger Bomber -- A Study in Information Science Techniques,"

1974.)

Uncertainty concerning the future of the Badger thus includes (1) uncer-

tainty concerning present deployment and capabilities of the Badger; (2)

uncertainty concerning future deployments; and (3) uncertainty concerning the

methods to be used in estimating the future.

These are just the uncertainties that the traveler faces in his conflict

with the riverboat gambler. He does not know the cards in the gambler's hand

or their order in the deck; he does not know how the gambler will bet or play;

AL and he is not very sure of the way in which he should estimate the gambler's

chances of winning. But there is one difference between U.S. intelligence

consumers and the traveler: the traveler could always withdraw from the game.

3-7

*MOW*[



M DP

SECTION 4

UNCERTAINTY AND PROBABILITY

in each (situation) there is an uncontrollable random event in-

herent in the situation. The distinction between a risky situation and an

uncertain situation is that in the former uncontrollable random event comes

from a known probability distribution, whereas in the latter situation even the

probability distribution is unknown." (Madansky, "System Analysis and Policy

Planning Applications in Defense")

The proper definition of "probability" has been a subject of controversy

from the time that probabilistic methods were first introduced in the Seven-

teenth Century. From a purely subjective point of view, it might be said to

measure the degree of credence that we place in some hypothesis or other prop-

osition. If we believe very strongly in something, then we ascribe a high

probability to it -- from the subjective point of view.

Clearly, our subjective probability may be wrong. I may believe very

strongly in my chances of winning in a game of poker against the riverboat

gambler; but an objective observer would have to say that my chances are much

smaller than I think they are. In general, as I look back over my lifetime, I

can think of many times in which I believed very strongly in something, only to

have it turn out to be false. For this reason, I generally look upon my own

strong beliefs, and especially the strong beliefs of other persons, with a good

deal of skepticism.
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A major contribution of the Seventeenth Century probabilists was an al-

ternative approach to the measurement of probabilities, which is objective in

nature rather than subjective. It takes two forms, which we will label "ana-

lytic" (or "a priori") and "synthetic" (or "a posteriori").

The analytic approach is based upon the definitions of the objects or

entities involved. For example, if we define a "fair die" as one which is

equally likely to come up with any one of its six faces showing, then it fol-

lows logically and mathematically that the chance of any one face (such as the

four) coming up is 1/6. This is a logical consequence of our definition of

"fair die." If the chance of the four coming up were anything other than 1/6,

then it wouldn't be a fair die.

We can, of course, test any specific die to find out whether it is fair.

We can throw it a hundred times, and count how many times it comes up one, two,

three, and so on. If, on every one of the hundred throws, it comes up six,

then we can say, "It is not very likely that this is a fair die." And we can

easily compute the likelihood that it is fair; this probability is (1/6)
100

-781.5306 x 10- , which is a very small number. A die which came up six in every

one of one hundred tosses, then, would not be likely to be a fair die.

The other approach to measuring probabilities is the synthetic approach.

Instead of beginning with the definitions, it begins with a count of the pro-

portions present in a population. Since this approach has been used by actu-

aries for determining insurance rates, it can also be called an "actuarial"
approach.
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Suppose that a person has received 10,000 Christmas tree lights for dec-

orating the office. How many of them are faulty? Without attempting to test

the entire lot of them, he or she decides to test 100 of them, to get some

idea of the number of faulty bulbs to expect. Suppose that 10 of the bulbs

refuse to light, or burn out immediately. Then the best guess concerning the

entire lot of bulbs would be that the same proportion, or 10 percent, would

be faulty.

Of course, this example is much too simple, because we would also want

to know - to determine how many spare bulbs to order how likely it is that

15 percent of the total might be faulty, or 20 percent, or some other propoz

tion. A statistician could easily provide a reply to these and many other

questions.

Three approaches to the measurement of probability, then, are: (1) a

subjective approach, measuring our degree of belief; (2) an analytic approach,

based on the definitions of the entities involved; and (3) a synthetic ap-
proach, based on a statistical investigation of the behavior of similar en-

tities in the past.

All three types of probabilities play a role in determining the uncer-

tainty of intelligence projections, but this report will concentrate on the

first type, "subjective" probabilities, because they are most useful for in-

telligence estimates; they are also most controversial, because they are dif-

ficult to measure, may differ from person to person, and are difficult to

evaluate, to determine whether they are right or wrong. Where they are
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available, mathematical and statistical probabilities (the second and third

types) should certainly be used in measuring and comunicating the uncer-

tainty of intelligence estimates. For example:

o The known resolution accuracy of an aerial camera gives a precise.

range of error in the estimation of the length of a Soviet missile,

photographed from a satellite at a known height. For any photo-

graph, there is a statistical distribution of possible lengths of

the object photographed. On the basis of this information, we

could, for example, determine the probability that two photographs

represent missiles of the same 'Length, or missiles of two different

lengths. This result would not be based upon a large-scale statis-

tical survey of missile photographs, but upon the characteristics

of the equipment involved. It would therefore represent a prob-

ability distribution which used the second, or analytic, approach.

0 Barracks are under construction near a new Chinese factory.

Previous (hypothetical) experience, including accurate counts of

personnel at 100 other Chinese factories, indicates that the

Chinese provide 20 square feet of floor space per person in their

barracks. This factor may therefore be used in estimating the

number of persons to be employed in the factory. In addition,

previous experience has shown a degree of variability in the amount

of floor space allotted; knowledge of this variability permits us

to set upper and lower bounds on our estimate of the number of
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persons to be employed. Use of this approach to the estimation of

probabilities would represent the statistical, actuarial, or syn-

thetic approach.

0 Reports from a government agency indicate that the Soviets are

developing a new type of radar specifically to detect and track

U.S. cruise missiles. The agency estimates that 100 such radars

will be deployed and operational by 1985. In checking their report,

a large number of unanswered questions are found concerning the

accuracy of their information and the validity of many of the

inferences that they have drawn. We are willing to say only that

there is some chance say 40 percent that the radars will actually

be installed by the target date. We cannot, of course, base this

figure on any largescale statistical study of radar installations.

And we are not using any techniques of mathematical analysis to

arrive at a welldefined number. Instead, we are saying that we

think that there is some possibility that the installations will be

r completed, but we feel that there is something less than a fifty-

fifty chance that they will be. We are stating, in short, a sub-

jective probability.

Interviews with DIA estimators indicated that probabilities of of this

type subjective probabilities were far more frequently used than prob-

abilities of the other two types. For this reason, we will concentrate upon

subjective probabilities in this report. Because the word "subjective"
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carries connotations of guesswork, we generally use the term "probability

assessments" to refer to them. As noted in Section 8, probability assessments

can be calibrated in such a way as to permit their use in a consistent, well-

founded manner.

Many of us are nevertheless hesitant about assigning probabilities to

individual events, because it is difficult to determine precisely what is

meant by such probabilities. Suppose, for example, that you yourself are

playing solitaire with your own deck of cards. You shuffle it several times,

cut the deck, and place the top card face-down on the table. What is the

probability that the card is the ace of spades? Most of us would say that it

is 1/52 = 0.019. We have no serious problem in estimating this probability

which is an "analytic" probability based on the definition of the card deck,

and of a random draw from such a deck.

Next, suppose that the card comes from an unfamiliar deck, which belongs

to a riverboat gambler. He has shuffled and cut the deck himself. He is

wearing a baggy coat that could easily conceal some extra cards. And you

stand to lose a substantial amount to him, if you fail to guess correctly.

Now, what is the probability that your guess will be correct?

Obviously, the probability in the second example is much more difficult

to estimate than the probability in the first example. There are an indef-

initely large number of factors which may be relevant to the estimation,

including unknown factors such as the possible presence of a conspirator
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among the onlookers. A really clever opponent will be attempting to find

exactly those ruses that you have neglected to identify.

It should be clear that the situation faced by the intelligence estimator is

considerably closer to the second example than to the first. Our potential

adversaries have absolutely no reason to play a "fair" game, if it is not to

their advantage to do so. They may be expected to take advantage of every

opportunity for concealment or misrepresentation of their capabilities and

intention.

Because of the large number of elements that can serve to increase or

decrease the probability of an intelligence estimate, it is rarely possible

to rely on mathematical or statistical probabilities. Instead, the judgment

of an experienced intelligence producer, who can take into account the many

factors that may affect the probability of an estimate, must be used.

* A subjective probability represents an assessment of the chance that a

given proposition will be found to be correct. Like other probabilities, it

is expressed as a proportion, in the range from 0.0 to 1.0. A subjective

probability can be correct or incorrect, depending on the degree to which it

is well-calibrated. Calibration is defined in terms of a statistical prob-

ability: over a large number of subjective probabilities, if we have assigned

a probability of 0.70 to some propositions, then 70 percent of them should be

found to be correct; and similarly for other probabilities. If these propor-

tions hold, then we are said to be well-calibrated; if they do not hold, then
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we are biased toward conservatism (if we underestimate probabilities) or

toward anti-conservatism (if we overestimate them).

You are well-calibrated, then, if you do a good job of evaluating the

quality of the information that you have, and if you have a realistic sense

of your own ability to examine and to integrate this information.

Much of the remainder of this report is devoted to the development of

methods for producing well-founded probability estimates. In particular,

Section 7 presents an approach to the estimation of probabilities, Section 8

includes methods for calibrating probabilities, and Section 9 provides an

approach to the elimination of bias.

In this section, we will suggest two general approaches to the quanti-

fication of uncertainty, the holistic and the compositional:

The holistic approach deals with wholes, the organic, inclusive struc-

tures of events. In artificial intelligence applications, these wholes are

sometimes called frames, scripts, or scenarios; in Section 11 of this report,

we will use the term "scenario" to refer to the inclusive structure of hy-

pothesized future events, which fit together to form a consistent whole.

Using the holistic approach, the intelligence producer provides a prob-

ability for the scenario as a whole; based on this overall estimate, figures

for the individual components can be derived. Several examples of such
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scenarios are provided in Section 11. Here, we will use a somewhat more

artificial example.

It is well known that many of the more hawkish forces within the Soviet

Union believe that a large-scale nuclear war can be actually be fought and

won. On the basis of this belief, they may be expected to emphasize those

elements of the Soviet military structure that would seem to make such a war

possible. Offensive missiles in concealed, hardened locations might be among

the elements of this strategy. An increase in submarine forces might also be

considered, with deployments which would permit effective launches of SLBMs

against the U.S. continent at a moment's notice. Civil defense equipment

would be maintained, and training would help to insure survival of the civil-

ian population during a U.S. retaliatory strike.

A scenario would contain the details of this plan. Prepared by U.S.

intelligence personnel, it would begin with the overall approach, and would

contain the actions and developments that would be essential in carrying the

Soviet plan into action. Since the scenario begins with the overall plan, we

call this approach "top-down"; it begins at the most general level of a plan,

and works down to the smaller details.

Probabilities are next assigned to the plan in a top-down fashion.

Based on U.S. knowledge of the composition of leadership in the Soviet Union,

and upon a general view of Soviet intentions, a probability figure is obtained

for the total scenario. Next, probabilities can be assigned to each of the
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major components of the scenario. For example, if the Soviets are preparing

for a major offensive nuclear war, then the probability is very high that

they will develop an effective civil defense structure.

Calculation of the probabilities for the elements of the scenario are

straightforward. For example, suppose that the probability of an overall

Soviet plan for aggressive nuclear war during the next five years is 0.35.

Suppose that, if such a plan were implemented, then an increase in civil

defense allocations carries a probability of 0.90. We may now calculate the

unconditional probability of an increase in civil defense as 0.35 x 0.90 =

0.315.

Of course, we may know from other sources that civil defense is being

emphasized in the Soviet Union. This means that the actual probability that

we attach to this development is greater than 0.315. In its pure form,

however, the top-down, holistic approach derives these probabilities only

from the probabilities attached to the top-level scenarios, and the condi-

tional (if-then) probabilities that are included in the scenarios.

The compositional approach, which will be described in Section 6, begins

with individual events. It could be called a "'bottom-up" approach, because

it begins with the low-level individual developments and works upward to the

most general ones.

Probabilities are estimated for specific events (such as a Soviet de-

cision to develop a cruise missile), and a probability range is estimated for
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a quantitative projection for a single weapon system. These probabilities

are then combined to obtain higher-level probabilities -- obtaining, for

example, a probability distribution for all offensive missiles, then for all

missiles combined, and finally a figure indicating the total combined strength

of all Soviet military resources.

The compositional approach is often used in decision analysis; because

it frequently relies on Bayes' theorem, it is sometimes called "Bayesian

analysis." This approach has been extensively studied, and it is supported

by several computer-based systems. The Bayesian approach is briefly described

in Section 6, and a related non-Bayesian approach is outlined in Section 10.

Other approaches to the quantification, aggregation, and communication

of uncertainty are possible, of course. Information theory, for example,

defines uncertainty in terms of an analogue of entropy, and provides statis-

tical methods for combining uncertainties. (See Shannon, Claude E., and

Weaver, Warren, The Mathematical Theory of Communication, Urbana: University

of Illinois Press, 1949, pp. 51-53.) Briefly, our feeling has been that

insofar as information theory is applicable to the problems addressed in this

research, its methods are consistent with those of decision analysis. While

it would certainly be interesting to work out the details of an information-

theoretic approach (in which uncertainty = entropy, for example), it would be

confusing to attempt to use this terminology in the final report.

In Section 3, we have attempted to show that some method for communi-

cating uncertainty to intelligence consumers is required, and that this
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method should be numerical, rather than verbal, in form. Furthermore, we

believe that the most useful numerical form will be that of probabilities,

which range from 0.0 to 1.0. In this range, 0.0 represents the subjective

probability corresponding to total disbelief, absolutely no credence, while

1.0 represents total belief or credence.

i

L
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SECTION 5

ESTIMATIVE INTELLIGENCE METHODS

*"What is called 'foreknowledge' cannot be elicited from spirits, nor from

gods, nor by analogy with past events, nor from calculations. It must be

obtained from men who know the enemy situation." (Sun Tzu, Fifth century B.C.

Chinese sage.)

This section reviews methods currently used by DIA-DE for the production

of estimative intelligence, with emphasis on methods used for identifying and

communicating uncertainty. It is based on interviews with DE estimators

conducted on 1-3 November 1978 in connection with this project. Material is

also drawn from interviews of 26 May 1976, which were conducted in connection

with Contract No. F30602-76-C-0206 (TEAMS). Background material has been

drawn from literature as cited.

It should be emphasized that the methods described in this section are

intended to represent the approach which is actually in use at DE, not Lhose

methods which have been recommended by others. The development of new methods

was specifically excluded from the scope of this project. However, the

methods described here are synthesized and generalized from interviews with

several different estimators who employ a variety of approaches; they there-

fore represent a somewhat idealized picture of the estimative process.
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5.1. STRATEGIC INTELLIGENCE METHODS

The type of reasoning employed in strategic intelligence may be illus-

trated by this brief anecdote:

"While working on Eisenhower's scientific advisory committee in 1959 and

1960 I had to assess some of the early claims that the Russians were develop-

ing an ABM system. The Soviets, we knew from our intelligence, had a center

for antiaircraft and antimissile work at Sary Shagan in Central Asia. Our U-2

planes observed there a large radar installation that miht, it was thought,

be a device for detecting incoming missiles. Our intelligence experts immedi-

ately linked this installation to the Soviet tests of medium-range ballistic

missiles at Kapustin Yar, many hundreds of miles to the west. They conjec-

tured that the Russians were putting together the combination of radar (to

detect incoming missiles), computers (to track them), and interceptor missiles

(to destroy them) that makes up an ABM system." (George B. Kistiakowsky,

"False Alarm: The Story Behind Salt II," New York Review of Books, March 22,

1979, pp. 33-38.)

A specific hypothesis is required, which is suggested to the analyst by

observations. In addition, inferences are needed to link the observations to

the hypothesis. Finally, the hypothesis is verified by supporting evidence.

Note the crucial role of the hypothesis -- in this case, the claim that

the USSR was developing an ABM system. It is this hypothesis that makes sense

of the various observations, such as the simultaneous development of a radar
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installation and tests of ballistic missiles. No mention is made in this

anecdote of the verification (or validation) of the hypothesis. (Verification

would mean the gathering of supporting evidence; validation means the gather-

ing of conclusive evidence.) Verification and validation are not always

possible for hypotheses in strategic intelligence.

Another approach to verification would be the development of alternative

hypotheses. Can we find some other conjecture that would do an equally good

job of explaining the evidence that we have? If so, are there any furthez'

tests that we can perform that would help us to choose between them? If no

other hypothesis can explain the available data, then the given hypothesis may

be regarded as verified (or validated, if conclusive evidence shows that

other hypothesis is tenable).

Sources of uncertainty in this anecdote may be'identified:

0 The initial identification of the center at Sary Shagan as a center

for antiaircraft and antimissile work is based on a train of reason-

ing which is here omitted; nevertheless, the identification may be

incorrect.

o The identification of construction at this site as a radar installa-

tion is somewhat uncertain, although it appears to be highly likely;

nevertheless a misidentification, due perhaps to Soviet deception,

is possible.
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o On the other hand, the surmise that the radar installation might be

intended to detect incoming missiles plays a somewhat different

logical role. It provides negative evidence for the hypothesis:

there is no clear sign that the radar installation is going to be

used for some other purpose.

o Another source of evidence, and of uncertainty, is in the identifi-

cation of Soviet tests of medium-range missiles at Kapustin Yar. In

this case, of course, the degree of uncertainty is minimal; it would

be difficult to fake a missile test.

o The most significant source of uncertainty is in the completed

hypothesis itself, that the Soviets were developing an ABM system.

This claim must be shown to make sense of the various Soviet actions

and installations that have been observed, and it will in the end

depend on a comprehensive understanding of Soviet strategy, internal

politics, economic structure, technical capabilities, and, in short,

the total Soviet system. At the same time, if the given hypothesis

can be shown to fit within the overall picture of Soviet aims and

capabilities, and to be consistent with the specific observations,

then it can be advanced with as high a degree of certainty as can be

obtained in the social sciences. Thus, the hypothesis makes sense

in the context of a larger set of hypotheses concerning the Soviet

system.
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5.2. THE NATURE OF ESTIMATIVE INTELLIGENCE

Like other forms of strategic intelligence, estimative intelligence is

concerned with the determination of the capabilities and intentions of a

potential adversary (and, in the case of the NATO nations, of an ally).

Estimative intelligence differ& from current and basic intelligence in that

the capabilities and intentions must be projected into the future, where (at

least for finite human beings) events are indeterminate. In practical terms,

this means that the intentions of a potential adversary may change in unpre-

dictable ways over the course of the next ten or twenty years. The rise of a

Sadat or a Khomeini in the Middle East, for example, has brought about changes

in the intentions of the nations that they represent. While it is possible,

thanks to hindsight, to identify those forces within Egyptian or Iranian

society that gave rise to the policies of Sadat and Khomeini, it would have

been wildly speculative to have predicted them ten years in advance. Simi-

larly, new inventions and discoveries may contribute to basic changes in the

capabilities of an adversary. Thus, many technological developments which are

operationartedy could not have been realistically foreseen ten or twenty

years ago. N

Projections over a limited time -- over perhaps as much as five years --

can be made with some assurance, on the basis of extrapolations of known

technology, known production capabilities, and reasonable assumptions concern-

ing intentions. Beyond this point, however, assurance drops off rapidly. It

may not be known, for example, when a given weapon system will be regarded as

obsolete, and major errors may occur in predicting this point. Because of the
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uncertainty of projections of the future, estimative intelligence contains a

degree of uncertainty which is not present in current and basic intelligence.

Nevertheless, it is necessary to assess the intentions and capabilities of

foreign nations in an effort to determine, as precisely as possible, what the

future will bring.

5.3. THE NEED FOR CREDIBILITY

Another factor which affects the methods that DE uses is the need for

estimates which represent a consensus of the intelligence community concerning

the future development of foreign weapon systems. DE personnel are required

to meet and consult with representatives of other intelligence agencies. The

central role of these meetings is essential to an understanding of DE's ap-

proach.

Estimators must justify their projections in a dialogue with other intel-

ligence personnel. It is not enough merely to hold and vote upon an estimate.

To obtain a consensus, it is necessary to convince other representatives that

an estimate is correct. A convincing line of argument must be developed and

must be defended against contrary arguments.

In short, DE must not only produce estimates, but must produce defensible

estimates. It is this need for justifying estimates that provides the incen-

tive for developing well-founded methods in intelligence production. These

methods are essentially those of the scientific method, based on hypothesis
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generation and testing, as they have been applied to research in the social

sciences.

In practice, this process would appear to work somewhat as follows. A

hypothesis, such as a date for withdrawal of the Badger, is proposed. Argu-

ments for or against the hypothesis are considered: the Soviet tendency to

retain obsolescent equipment, the record of success of the aircraft, lack of

evidence of new equipment to replace the Badger, the general need for aircraft

with these capabilities within the Soviet defense system, outstanding orders

from satellite nations. Alternative hypotheses are considered and evaluated.

A selection is then made from among the competing hypotheses, which serves as

the basis for a defensible projection.

Many discussions of the estimative process, particularly those that are

critical of the intelligence community, appear to suffer from "hindsight

bias." In Section 9, a full discussion of "hindsight bias" will be presented.

Briefly, this is a form of second-guessing in which intelligence personnel are

criticized for their failure to predict a given event or development. In somef
sense, it is said, they should have known that the Soviets would invade

Czechoslovakia, or that the Shah would be overthrown. From a contemporary

vantage point, it is possible to look back on the plethora of indicators that

were available to intelligence officers, from which they should have been able

to foresee the future.

As Roberta Wohlstetter has pointed out in her classic study, Pearl

Harbor: Warning and Decision, actual prediction of a future event is far more
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difficult than second-guessing after the event. Mistaken presuppositions

concerning the enemy's intentions, erroneous information concerning their

capabilities, and an overwhelming supply of "noise," or irrelevant informa-

tion, all tend to distort and confuse our vision of the future. Hindsight

bias, then, is the tendency to suppose that prediction is really much easier

than it is.

In the context of this section, recognition of hindsight bias is needed

to avoid the temptation to succumb to it -- to suppose that unusual or unex-

pected events can actually be predicted, and that the role of estimative

intelligence is to prophesy the occurrence of unusual changes in the inten-

tions or capabilities of our potential adversaries.

Estimators see their role, however, as the development of credible pro-

jections of the intentions and capabilities of the Soviet Union, the PRC, and

other foreign powers. The credibility of their projections is essential;

repeated attempts to predict exotic or unexpected happenings would soon result

in a "cry wolf" response from intelligence consumers. After a few incorrect

predictions of cataclysmic events, the consumers would tend to disregard

further predictions.

The need to maintain credibility therefore introduces a healthy conserva-

tism into DE's methods. Projections must be justified on the basis of known

information and acceptable models (where the "models" are representations of

the social structure, intentions, military forces, and other relevant elements

of Soviet, Chinese, or other nations). The need for justification of a
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projection thus determines the methodology used in the production of estima-

tive intelligence.

5.4. THE ROLE OF UNCERTAINTY

To encourage a realistic understanding of its projections, DE has used

several techniques to communicate the uncertainty present in them. Where the

justification of a projection indicates some degree of doubt, this doubt must

be comnunicated to the user. Later information should show that the more

doubtful projections are less accurate, on the whole, than those that are

stated with a greater degree of assurance. In this way, the credibility of

the estimative process may be maintained.

In Section 3, we found that the role of uncertainty in DE's projections

is more important than that of simply providing a hedge against possible

errors, and thus maintaining credibility. It should be possible for intelli-

gence consumers actually to make use of information concerning uncertainty, in

* such ways as the following:

o In the development of games and simulations, some estimate can be

made of the probabilities of various alternative scenarios. For

example, if it is uncertain whether a Soviet ABM capability will be

developed (with specified characteristics), then the corresponding

scenario will be equally uncertain.
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o In recommendations for R&D developments to meet a projected Soviet

threat, some estimate of the uncertainty of the threat would help to

determine the urgency of the recommendation.

o Similarly, in recommendations for deployment of a given U.S. weapon

system, it is essential to determine the degree of certainty to be

attached to projected Soviet developments in related areas.

It is important, then, that some indication of the uncertainty to be

attached to DE projections be provided for the guidance of intelligence con-

sumers.

5.5. A DEFINITION OF UNCERTAINTY

In this report, the "uncertainty" of a predicted event has been defined

as one minus the estimated probability that it will occur. In the case of

quantitative predictions, uncertainty may be defined in terms of a confidence

interval, in which the probability that the quantity will lie within the range

has been estimated. As noted in Section 4, "estimated probability" is also

called "subjective probability" or "personal probability." The determination

of estimated probabilities will be treated more fully in Section 7 of this

report.

We may, of course, be somewhat uncertain about the estimated probability;

we may be uncertain about how uncertain we are. And we may be uncertain about

this level of uncertainty, and so on, to any level of meta-uncertainty. These
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cascading uncertainties could threaten any system for the measurement and

communication of uncertainty. To avoid this difficulty, we will simply ignore

it here; the uncertainty in a projection is whatever the estimator says it is.

Later (in Section 7) we will want to explore this problem much more carefully.

In some of the Army intelligence literature, "uncertainty" is contrasted

with "risk." Risk occurs when a decision is made, knowing the probabilities

involved; uncertainty is present when we do not know the probabilities. In

the context of this report, "uncertainty" will apply to both situations, since

we may or may not be able to obtain an accurate estimate of the probability of

various alternatives.

5.6. MISSING AND ERRONEOUS DATA

By "missing data" we mean those pieces of unknown information which would

be relevant to a given projection if they were known. Like the missing pieces

in a picture puzzle, they may be clearly identifiable as missing: Are these

multiple warheads independently targetable, or aren't they? On the other

hand, some data may be totally unknown: The Chinese are constructing an

underground testing facility at point X, about which we know nothing whatever.

Finally, some data may be unknown because they have not yet occurred, they are

part of the future: A coup d'etat overthrows the Chinese regime and re-

installs the radical policies of Mao Tse-tung, thus greatly modifying Chinese

policies toward the U.S.
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Our general understanding of the nation helps to provide a context which

will limit the effect of missing data. Like a partially-completed picture

puzzle, it provides a general picture of the policies and capabilities of a

potential adversary. While we may not know the details' of a specific meeting

in the Kremlin, we can at least gain some idea of what would happen at such a

meeting, based on our general knowledge of Soviet attitudes, combined with all

the information that we do have concerning Soviet activities before and after

the meeting.

In short, the scientific method requires that we account for all the

available data within the context of a general hypothesis concerning the

phenomena that we wish to investigate. As new data are obtained, they tend to

verify our tentative hypothesis; or they may cause us to modify or reject it.

The role of missing data, then, is to increase the uncertainty present in our

general model; if all data were missing, uncertainty would be total, and if no

data were missing, then there would be no uncertainty.

Another source of uncertainty in the initial data may derive from errors

in the order of battle (OB), which serves as a base line for projections.

This is a serious problem, since we cannot know the true level of forces in

foreign nations, particularly in China, and as a result estimators cannot

compare past projections with a true figure, but only with a figure which may

be correct with a certain probability. In addition, when past figures (e.g.,

for 1971) are revised (e.g., in 1974) we have no assurance that the revision

makes the newly revised figures more accurate. In fact, the revision may

simply be the result of smoothing a trend line in one plausible direction or
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the other. In addition, changes may reflect not only more accurate figures,

but more effective collection systems. Specifically, when there is a sharp

increase in (say) ICBM figures from 1971 to 1972, this may not mean that

forces were significantly increased, but rather that satellite cameras were

greatly improved at that time. As a result, the accuracy of earlier figures

may be thrown into doubt, and earlier OB data are less credible than more

recent data. No confidence levels are available for OB data.

5.7. DECEPTION

As in all forms of strategic intelligence, conscious deception by a

potential adversary provides another source of uncertainty. Even our allies

may habitually provide misleading figures concerning their capabilities. One

nation, wishing to conceal the extent of its defenses, may produce figures

which are much smaller than the actual figures; another nation, which wants to

give an exaggerated vision of its capabilities, may provide artificially

inflated figures.

DE estimators are aware of these deceptions, and may revise their projec-

tions toward more realistic numbers than those provided by the governments. A

more difficult task is provided in some instances by those nations in which

military planning is performed badly, and in which there are simply no realis-

tic figures available to anyone. Under these conditions, DE's task is to

develop realistic projections on the Dasis of whatever data may be available.
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For the communist nations, the work of the estimators must be based on a

comprehensive understanding of the nation. Every factor which might influence

the development of a weapon system must be taken into consideration -- the

national economy, domestic and international policy and goals, the location

and capacity of production facilities, natural resources located within the

nation or available through its allies, technological capabilities and the

output of research laboratories, areas which are receiving special attention

in research, the power base of the current regime and the likelihood that it

will remain stable, the organization and leadership of the armed forces,

military policies which have become traditional -- in short, many aspects

which, together, form a "model," or rational intellectual picture, of the

nation as a whole.

With a clearly-defined model of the nation, it is possible to develop

reasonable estimates of its present and future capabilities in specific areas.

For example, if we understand the importance of the five-year plans for Soviet

resource development, and if we understand that the Soviets are rather slower

,than the Americans in disposing of obsolescent equipment, we can make some

reasonable estimates of the dates by which a given weapon system will be

replaced.

A clearly-defined and correct model of Soviet intentions and capabilities

provides a basis for dealing with attempted deception. The deception itself

fits into the pattern of overall Soviet strategy, which provides a rationale

for the deceptive maneuver. Within obvious limits -- the model must itself be
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tested against reality the use of a comprehensive model provides a defense

against deception.

Deception does not merely introduce an element of uncertainty into the

estimative process. The attempted deception must be motivated, and valuable

information may be derived from the most deceptive material, if the underlying

motive can be correctly identified. For example, two Soviet political scien-

tists have prepared an article for a recent issue of Fortune magazine, which

attempts to justify the USSR's massive expenditures for armaments within the

context of peaceful Soviet intentions. The U.S. reader will not, of course,

take these protestations at face value. Valuable information can nevertheless

be obtained concerning Soviet intentions if we succeed in interpreting them

correctly, since the article surely indicates what the Soviets want Americans

to believe. More generally, the art of propaganda analysis attempts to derive

information of value from deceptive material, not merely to reject it as

false.

5.8. THE "PARADOX" OF INTELLIGENCE

The so-called "paradox of intelligence" is present in all forms of strate-

gic intelligence. In one version, this says, "If you're right, then events

will prove you wrong." In less paradoxical form, we note that the goal of all

intelligence is to provide information for the use of military and other

decision-makers, who may be expected to take action which will counteract any

projected threat. For example, if we project the development of a substantial

Soviet ICBM capability, the U.S. should be expected to respond in such a way

5-l5

__



as to reduce or eliminate the threat that the ICBMs present. If the U.S. does

successfully develop an effective counterforce, this could lead the Soviets to

modify or abandon their ICBM development. If they were to do so, then our

original projection will be "wrong." The Soviets would not have the ICBM

force that we projected.

But in any reasonable sense, of course, the original projection was

"right." The Soviets did indeed plan to develop an ICBM capability, but

thanks to our timely response, they were forced to change their plans. We

were correct in identifying the original Soviet intentions. Unfortunately,

the format in which the projections are made does not clearly indicate that

they represent intentions and capabilities; instead, they appear to represent

firm predictions of the future. Thus, in an evaluation of the quality of the

projections, they are judged "wrong."

This "paradox" indicates another source of uncertainty in DE's projec-

tions: the possibility that the intentions of a potential adversary may

change as an eventual result of the projections themselves.

5.9. "INTUITION"

The word "intuition" was sometimes used by estimators to describe the

process by which they arrived at projections. This is rather misleading,

since it suggests that intelligence production is sometimes little more than

guesswork.
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The role of "intuition" becomes more significant if we recall that

master-level checker players, who were questioned about their methods in

connection with a checker-playing computer program, often said that they chose

their most successful moves by "intuition." By this, they simply meant that

there were no general rules guiding their choices; instead, they relied on

their understanding of the game as a whole, their sense of the patterns pre-

sent on the checker board, their choice of a strategy for this particular game

and opponent, and so on.

j Similarly, "intuition" for an intelligence entimator could include a

global understanding of the nation as a whole, some insight into typical

strategies employed, a recognition of specific capabilities, and a variety of

"fringe" or ancillary factors that could influence a decision concerning

weapon development, deployment, or withdrawal.

For example, an estimator may be considering Soviet ABMs. The current

SALT agreement may permit 100 missile launchers, as a maximum, at Moscow. In

fact, they have 64 launchers. What will they do? The estimator believes (let

us suppose) that the Soviets are very concerned to protect Moscow, and that

therefore they will increase the number of launchers around the city. The

estimator thus draws on a general model or "picture" of Soviet goals and

priorities, using it to predict a concrete action to be taken by them.

Traditionally, "intuition" has meant an immediate "seeing," as we see the

truth of the formula "2 + 2 = 4,"' once we understand the meaning of the various

symbols that make it up. The process does not represent a flippant substitute
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for scientific thought, but acts as the basis for scientific thought, providl-

ing the first premises that are required for further analysis.

In strategic intelligence applications, "intuition" is the process by

which the experienced analyst attempts to take relevant factors from a variety

of sources into account, and to combine them to form a comprehensive pattern

that "makes sense" of the observed phenomena.

In actual practice, however, projections are generated through the use of

a limited number of estimationparameters, such as:

o Deployment rate

o Rate of change

o Retirement rate

o Estimates of ratios among weapon systems.

These more mundane figures provide the basis for determining how many weapon

systems of a given type will be deployed at a specified future date. In the

extreme case, an estimator who is pressed for time may simply use a straight-

line extrapolation of current trends. Some uncertainty is present in the

projections, since there is uncertainty concerning all these parameters --

particularly in the timing for introduction and phase-out of a weapon system.
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A specific example may make this process clearer. In estimating future

naval systems, the estimator knows that prototypes are planned five years in

advance. Designs and requirements are specified, and, in the Soviet Union,

the vessels are produced over a period of ten years. Naval --essels have a

twenty-year life span. Using these figures, the estimator can cLc.1struct a

simple mathematical model of Soviet naval development.

A complicating factor is the "learning curve" exhibited in the develop-

ment of a weapon system. Production begins slowly, as people in a factory are

learning how to produce a system and as bugs in production and in design are

located and eliminated. Then there is a period of rapid growth in numbers of

weapons, as-maximum production is obtained, for a period of years. Then this

tapers off, as production is slowed and finally halted.

Although computer simulations have not actually been used in the pro-

duction of estimates, it is clear that some portions of the estimative process

might be automated, to the extent that models like these may be formalized.

5.10. COMMUNICATING UNCERTAINTY

Several methods are currently used for communicating the uncertainty

present in intelligence reports. This subsection will include a brief descrip-

tion of such methods, together with commentary concerning their potential

value for DIA-DE.
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5.10.1. Kent Chart

Until recently, DE has used reporting methods proposed by Sherman Kent

(Figure 5-1). Essentially, the Kent chart provides a translation from certain

natural language phrases ("It is likely that . . . ") into numerical estimates

of probability. Kent developed this approach following his observation that

the natural-language phrases were subject to wide variations in interpreta-

tion, and that they served to conceal disagreements concerning the likelihood

or uncertainty present in intelligence reports.

There has been some disagreement about the correctness of Kent's original

observation; that is, it may be possible for humans to communicate in natural

language with less ambiguity than he supposed, and it may be more difficult

for humans to use numerical indications of probabilities.

Thus, in an unpublished paper, "Probability and Modality in the Lexicon,"

Valerie F. Reyna found that 34 adult volunteers substantially agreed on the

ranking that they gave, based on the degree of uncertainty present, to the

following modal words: 'impossible,' 'inconceivable,' 'unfeasible,' 'improb-

able,' 'unlikely,' 'uncertain,' 'indefinite,' 'unnecessary,' 'conceivable,'

'feasible,' 'possible,' 'probable,' 'likely,' 'necessary,' 'definite,' and

'certain.' Human beings are clearly capable of using and understanding modi-

fiers like theae, and they appear to agree concerning their relative force.

Experimental results, however, do not invalidate Kent's claim that expressions

like "It is likely" convey different meanings to different persons and can
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serve to conceal disagreements about the uncertainty present in an intelli-

gence estimate.

The significant conclusion to be drawn from research in this area is that

natural-language expressions like "It is likely" or "It is feasible" are used

for communication of uncertainty in normal human discourse, where the vague-

ness or ambiguity of such expressions reflects the difficulty that ordinary

people feel in estimating the uncertainty of their purported knowledge.

DE appears to have abandoned the use of the Kent chart in favor of the

direct reporting of estimated probabilities (Subsection 5.10.3.).

5. 10.2. Reliability-Accuracy Ratings

A widely used coding system assists in communicating the estimated relia-

bility and accuracy of an intelligence report (Figure 5-2). According to

Harry Howe Ransom, in The Intelligence Establishment, "The most frequent

complaint from intelligence consumers is that this system is too mechanical;

they would like to know more about the source of material as an aid in their

own evaluation of the contents. Another complaint is that too frequently a

middle-ground evaluation, such as 'undetermined' is given" (pp. 40-41).

A more intensive study of the usefulness of the reliability-accuracy

ratings is provided in Michael G. Samet's "Quantitative Interpretation of Two

Qualitative Scales Used to Rate Military Intelligence." Thirty-seven intelli-

gence officers were tested to determine their subjective, quantitative
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Figure 5-2

SOURCE RELIABILITY INFORMATION ACCURACY

A -- Completely Reliable 1 -- Confirmed

B -- Usually Reliable 2 -- Probably True

C -- Fairly Reliable 3 -- Possibly True

D -- Not Usually Reliable 4 -- Doubtfully True

E -- Unreliable 5 -- Improbable

F -- Reliability Cannot Be Judged 6 -- Accuracy Cannot Be Judged
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interpretations of the source reliability and information accuracy (plausi-

bility) rating scales. In judging a report, they were influenced much more by

the accuracy rating of the report's content than by the reliability rating of

the report's source, when they assigned a numerical value to the likelihood

that the report was true.

In summary, difficulties with the scaling system included the following:

o Accuracy and reliability could not be interpreted as independent

factors.

o The system was under-used. Only 48% of spot reports in an Army

field exercise were rated for both reliability and accuracy.

0 Ratings were mostly confined to the high end of the scale. Category

B2 alone contained 74% of all ratings.

o Ratings were inconsistent, even for experienced intelligence ana-

lysts, and could not be improved through training. For example,

assigned probabilities for both "fairly reliable" and "probably

true" ranged from 0.40 to 0.80.

It should be noted that Samet's results differ from those reported by

Reyna and described in the preceding subsection. According to Samet: "Al-

though intersubject agreement on the meaning of one rating relative to another

is encouraging, the wide disparity in the absolute interpretation of each
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rating raises doubts about the effectiveness of the qualitative rating scales

to communicate specific levels of judgment" (p. 199).

Samet recommended that the dual rating system be modified to provide a

single-dimensional quantitative scale, in which the probability or likelihood

that a report was correct would be indicated by a number in the range from

0.00 to 1.00, by a percentage, or by odds. Thus, a report that was judged

very likely to be correct might be rated 0.90, 90%, or 9 to 1 odds; or a fixed

verbal phrase might be attached. "A specific rating could be based upon

integration of all available information: the reliability of the source,

confirming and nonconfirming reports from the same and other sources, the

situation, etc. This likelihood rating could be associated with the report

and used in subsequent data communication and processing" (pp. 200-201).

5.10.3. Probability Ratings

Some recent issues of the DIPP have included estimates of probabilities

in numerical form. Thus, a statement concerning a specific event or develop-

ment may be followed by "40 percent chance" in parentheses, reflecting an

estimate of the probability or likelihood that the preceding statement is

correct. This procedure is consistent with Samet's suggestions.

However, as Samet points out, "formidable problems can be expected with

regard to whether data raters can reliably assign likelihoods that will be

empirically valid (i.e., of all reports assigned a truth likelihood equivalent

to an x% probability, x% of those should turn out to be true)." He recommends
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the use of interactive computer aids which will elicit the appropriate likeli-

hood judgment from the estimator.

In addition to the difficulty that estimators have experienced in deter-

mining such probabilities, they have also found that intelligence consumers

tend to disregard them. Under these conditions, there is little motivation to

improve the quality of the ratings assigned to intelligence estimates. Final-

ly, no attempt has been made to validate the numerical ratings; there is no

indication that estimates which are "70% probable" have ever been tested to

determine that they were correct 70% of the time.

Still another type of problem that estimators found in the use of proba-

bilities was the loss of information that occurs when only a probability is

attached to an estimate. If we attach a particular percentage or probability

figure to a projection, we are simultaneously ignoring the assumptions that

combined to form that probability. These could include the probability at-

tached to the figures for the overall forces, the probability of a particular

mix of forces, the probability of deployment of a particular mix of forces,

the probability of deployment by a certain date, the probability of replace-

ment by another system, the probability of a response to U.S. postures, and so

on. All of these probabilities can be aggregated in some way, but the aggrega-

tion process serves to mask the rather more sophisticated reasoning that has

gone into a particular projection. The analyst may be entirely correct in a

general claim that system X will be replaced by system Y; but if the date is

somewhat in error, then the individual projections of numbers may be incorrect,

with the result that the entire projection is regarded as an error. In short,
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the use of a single-probability figure may be an extremely crude way of repre-

senting what the estimator has actually thought.

5.10.4. Confidence Ranges

In addition to the probabilities assigned to specific events or develop-

ments, DE provides confidence ranges for numerical estimates of force levels

for most countries. (A single estimate, not a range, is provided for Noncom-

munist Nations.)

Three estimates are provided: a high, a low, and a best. These are

selected as roughly representing a three-out-of-four chance (75%) that the

actual figure will lie between the high and the low estimate, and that the

best estimate is most likely. The distribution of probabilities within the

range is not specified, and no specific probability is assigned to the best

estimate. In addition, the 0.75 probability is not an exact figure; at one

point, it is suggested that one standard deviation from the best estimate,

which would represent a 0.68 confidence interval, could equally well be used.

As with probability estimates, no attempt has been made to validate the

confidence intervals; there is no indication that they have actually included

the correct figure 75% of the time.

The high estimate does not always represent the largest number; and,

conversely, the low estimate is not always the lowest figure. In these cases,

the high estimate should be understood to represent a high level of effort
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concentrated in a given area, with the result that an aging weapon system may

be retired more rapidly in favor of a newer system. Similarly, a low effort

would mean that the obsolescent system might be retained for a longer time,

resulting in larger numbers for that system.

At times in the past, when an unusually high degree of uncertainty was

present, "spreads" were used for high, low, and best estimates. A spread was

a range of figures, rather than a single figure, for the estimate. Thus, all

three figures -- high, low, and best -- might be regarded as uncertain.

Information provided by these confidence intervals does not seem to be

used by consumers of estimative intelligence. For many purposes, only the

best estimate is used. At times, the worst case, represented by the high

estimates, is used. The low estimates are generally ignored. This selective

use of DE's products may indicate a lack of sensitivity to the information

concerning uncertainty that DE provides. At the same time, it suggests that a

more effective method for communicating uncertainty may be required.

5.10.5. General Assumptions

At the start of each DIPP, and in footnotes throughout the DIPP, assump-

tions are stated which assist in communicating some of the uncertainties

present in the projections. Assumptions may include the observance or nonob-

servance of a treaty (such as SALT agreements), lack of major hostilities,

continuation of the present regime, etc.
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While no probabilities are attached to these assumptions, users of the.

DIPP are thereby notified that the published estimates are conditional upon

them. Thus, they assist in conveying some degree of uncertainty for the

reports to which they are attached.

The assumptions do not, however, seem to be used by consumers of DE's

products. It is difficult to determine exactly how such information should be

used, except to provide some sense of the uncertainty present in all estimates

of future events. The assumptions do, however, provide some aid in modifying

assessments of the quality of previous DE projections: if the assumptions

upon which the earlier projections have been made are violated, then the

projections no longer apply.

5.10.6. Lack of Consensus

Occasionally, no consensus is obtained among the agencies responsible for

developing estimates. When this occurs, a footnote or appendix may be added,

indicating the lack of agreement, together with some of the justification

provided for each position.

When there is no agreement, such footnotes or appendices assist the

consumer in evaluating the degree of uncertainty that may be present in a

published projection.

Ill lk ........

J .- *w



5.11. SUMMARY

In this review of DE methods, several elements should be emphasized:

0 o DE must meet with other groups and justify estimates, with the

eventual goal of presenting a consensus estimate for the intelli-

gence community. This requires that estimates be defensible, that

appropriate justification be available to support them.

o Justification takes place within the context of a comprehensive

model of the nation under study, composed of defensible hypotheses

concerning national goals, military and industrial capabilities,

social structure, and other factors which might contribute to its

military posture. A thorough understanding of all relevant charac-

teristics of the nation is necessary to produce a justifiable pro-

jection concerning specific military developments.

o Projections are intended to represent verified scientific hypotheses

concerning development and deployment of military capabilities,

based on a general model of the nation, together with observed data

concerning the specific capability.

o Uncertainty enters into the projection process in many ways, includ-

ing missing data, conscious deception, errors in the models employed,

and so forth.
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o It is important to communicate this uncertainty to intelligence

consumers, who must know the degree of uncertainty in a projection

in order to make reasonable use of it.

o Attempts to communicate uncertainty have not been successful, since

little use is made of any of the proposed measures of uncertainty.

In addition, the need for calibration (validation) of measures of

uncertainty has been neglected.
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V
SECTION 6

STATISTICAL METHODS

as we move further into the age of scientific achievement, the

complicated machines and scientific detection devices require the greatest

sophistication on the part of the operators and analysts. Without this our

scientifically produced information as well as that furnished by the tools

of espionage would be of little use. For it is the patient analyst who

arranges, ponders, tries out alternate hypotheses and draws conclusions.

What he is bringing to the task is the substantive background, the imagina-

tion and originality of the sound and careful scholar." (Allen Dulles,

The Craft of Intelligence.)

This section provides an introduction to statistical methods for

aggregating uncertainty. The quotation from Allen Dulles with which this

section begins is intended as a caveat: statistical methods are designed to

assist humans in the production of intelligence estimates, not to replace

them. There is no substitute for the human being who has a broad under-

standing of the goals and structure of a foreign nation, of the technology

required to support its goals, and of its ability to achieve them. As we

shall see in Sections 7, 8, and 9, statistical methods can nevertheless help

to detect biases in projections and to locate inconsistencies in estimates of

uncertainty.

The problem for which we seek a solution here is that of determining

precisely the degree of uncertainty to be attached to an estimate or projec-
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tion, when the estimate is based on several sources of information, each of

which is somewhat doubtful. For example, we know that information obtained

from defectors and prisoners is likely to be self-serving and therefore

faulty. However, if several prisoners independently agree upon a report,

we are likely to give a much higher degree of credence to their combined

story than we would to any one of them taken separately. Similarly, if

several sensors (radars, photographs, infrared sensors) independently agree

in identifying the missiles under test at a given location, we should attach

a higher degree of certainty to the identification than we would to any one

fallible report standing alone. The problem for consideration here, then, is

the most effective, statistically correct method for combining measures of

uncertainty attached to various reports, in order to obtain an aggregate

measurement of uncertainty.

Several mathematical models, which have been developed as computer pro-

gram designs, are described in Appendix C. Although the mathematics involved

in these models is not particularly complex, it would burden the main text

of this report to include it here. Instead, a general, non-mathematical

overview will be presented.

Suppose that two reports of an event, such as a successful test of a new

anti-satellite weapon, are received. Suppose also that these reports are

independent. By "independent" we mean that the two reports came to us from

two completely different sources; they are not simply two versions of the

same report. If we know the probability that each of these reports
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separately is correct, what is the likelihood that they are correct when

taken together; that is, when they confirm one another?

A very simple probabilistic model for this problem might be the fol-

lowing. Let us call the first source of reports A, and the second source B.

Suppose that 70 percent of the reports produced by A are correct, and 80

percent of those from B are correct. Since the two reports confirm one

another, either both are correct, or both are wrong. What are the prob-

abilities that (a) both are correct, or (b) both are wrong?

We select at random, out of the mass of reports produced by A and B,

one report from each of them. Our chances for each combination of correct

and incorrect reports would then be:

P(A correct and B correct) = 0.70 x 0.80 = 0.56

P(A correct and B wrong) = 0.70 x 0.20 = 0.14

P(A wrong and B correct) = 0.30 x 0.80 = 0.24

P(A wrong and B wrong) = 0.30 x 0.20 = 0.06

Then we calculate the probability that both A and B are right, given that

they agree, as P(A and B, given agreement) = 0.56 / (0.56 + 0.06) = 0.903.

Thus, there are somewhat better than 9 out of 10 chances that they are correct,

given that they both agree in truth-value.

6-3

r yr 'I 'i~ J~l. .' ' -, ,..



Unfortunately, this simple probability model is much too simple for use

in aggregating the credibility of reports. It supposes that each source

produces a large number of independent reports, as a bottle factory might

produce bottles, and that some of these reports will randomly be found to be

faulty. In point of fact, some events are far more likely than other events,

thus some reports are more plausible than other reports.

When we say that one report is more "plausible" than another report,

we mean that it is more likely to be true -- based on our general knowledge

of the context in which it appears. Suppose that: (l) Soviet aircraft X is

a rickety, ancient plane that is constantly in need of repair, and (2) air-

craft Y is a sleek, new machine that performs effectively and reliably.

Suppose that we receive two reports: (A) that X is being mothballed, and (B)

that Y is being mothballed. Which report, A or B, is more likely to be

correct? Obviously, assuming some degree of rationality on the part of the

Soviets, A is more likely than B; we say that A is more plausible than B.

Two factors enter into the evaluation of the uncertainty of a report:

(1) the record of reliability of the source, and (2) the initial plausibility

of the event which it reports.

Bayesian methods are intended specifically for dealing with such

situations. They represent a straightforward development of Bayes' theorem,

which combines the initial plausibility measure with each piece of additional

information to obtain the probability of a projected event. The following

information is required: (1) the initial probability, before any new infor-
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mation is received, of the event; (2) the probability of receiving a report

of this type from this source; and (3) the probability, given the occurrence

of the event, that a report from this source would be received. Bayes'

theorem can be applied iteratively, using each new piece of information, to

obtain the probability of the event based on current information.

A full description of various forms of Bayes' theorem is provided in

Appendix C to this report.

Bayes' theorem is particularly effective in applications in which

decisions are structured and repetitive. One application in which we have

used it successfully is the identification of aircraft in the battlefield

situation, in which there are (1) several different radars and other sensors,

which can be used for identifying aircraft, and (2) a definite mix of friendly

and enemy aircraft for identification. In addition, there is (3) a well-

defined logical structure for the combination of reports from several sensors

in such a way as to define the probability of a specific aircraft. This

structure was experimentally determined in the research which preceded the

system development.

We believe that an effective Bayesian system for aggregating uncertain-

ties can be designed, and we have provided several examples of such systems

in Appendix C, which is based on our successful work in pattern recognition.

Because the level of mathematical detail is somewhat more complex than that of

the main body of this report, the details have been relegated to the Appendix.
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At the same time, we do not want to underestimate the difficulties

that this approach presents. A Bayesian approach -- and probably any related

approach -- would require such information as the following:

o The determination of prior probabilities for all events under

study. These represent the initial plausibilities of the events,

before current information is used. But one of the characteristics

of estimative intelligence is the need to determine the probability

4 of non-routine events -- that is, events for which prior probabili-

ties may not be known. The application of Bayesian methods then

becomes problematic.

o In any case, determination of prior probabilities for a Bayesian

system may require as much work and be as subject to error as the

assessment of probabilities without the use of an automated system.

o Experimental results indicate that the determination of conditional

probabilities may be extremely difficult for intelligence

personnel. In particular, Section 5 of this report indicates that

the use of a numerical system for reporting plausibility and

reliability in Army intelligence led to a situation in which most

of the probability assessments lay within a narrow range of values,

and in which many intelligence officers simply omitted one or

the other of the values for plausibility and reliability.
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Our conclusions are, then, that:

o Further research in Bayesian and related systems for decision

analysis is needed. Operational testing of such systems designed

specifically for estimative intelligence is essential.

o As we have noted in Section 4, the use of numerical probability

assessments is required for the consumers of estimative intelli-

gence. Since subjective probability assessments may be in error,

there should be more feedback to the estimators to assist them in

assessing uncertainty correctly.

o The aggregation of probability assessments is largely a bottom-up

activity; that is, it begins with low-level judgments and combines

these to obtain high-level assessments. An alternative approach,

to be described in Section 11, would be to begin with general

assessments on a more global level, and use these to obtain prob-

abilities at the lower levels. The top-down approach more closely

resembles the actual procedures employed by many estimators.
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SECTION 7

PROBABILITY ASSESSMENTS

"It is a common view that belief and other psychological variables

are not measurable, and if this is true, our inquiry will be vain; and so will

the whole theory of probability conceived as a logic of partial belief; for

if the phrase 'a belief two-thirds of certainty' is meaningless, a, calculus

whose sole object is to enjoin such beliefs will be meaningless also. There-

jfore unless we are prepared to give up the whole thing as a bad job we are
bound to hold that beliefs can to some extent be measured." (F. P. Ramsey,

"Truth and Probability.")

In this section, methods for determining probability assessments are

described. This disscusion is intended to provide a clear answer to the

question, "What is really wanted when intelligence consumers ask for measures

of uncertainty?" Section 8 includes further methods for calibrating or

insuring the accuracy of probability assessments, and Section 9 describes

common errors in estimating uncertainty.

The measures of uncertainty to be described here are frequently called

"subjective probabilities" or "personal probabilities" in the literature of

decision analysis. These phrases, however (like "intuition"), suggest a type

of irresponsible guessing that we would like to avoid. For this reason, we

will call them "estimated probabilities" or simply "probabilities."

L
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Roughly, these probabilities represent the "degree of belief" that we

hold in a given proposition. They were first given an operational definition

in papers written by F. P. Ramsey in 1927-1929 and collected in The Founda-

tions of Mathematics: a person's degree of belief may be measured by offering

him a series of bets. Each bet has a known probability of sucess. This

probability can be compared with the person's degree of belief to obtain a

well-defined numerical measure of belief.

Suppose that we ask someone, "What is the likelihood that Jerry Ford will

be elected President in 1980?" He may not be able to give a numerical reply.

We therefore offer him a choice between two bets: (1) the first will pay him

$10.00 if Ford wins, and nothing otherwise; and (2) the second will pay him

$10.00 (in November, 1980) if a coin comes up heads, and nothing if it comes

up tails. Clearly, if he chooses the first bet, then he believes that Ford

has better than a 50-50 chance of winning, which would make it more likely

that he would obtain the $10.00. If he chooses the second bet, then he be-

lieves that Ford's chances are less than 50-50, since a flip of a coin would

be more likely to obtain $10.00 for him.

This simple example scarcely does justice to the more elaborate bets and

counter-bets that may be offered to obtain a precise, numerical characteriza-

tion of a person's beliefs. Nor does it attempt to deal with the many irrele-

vant factors that might lead to an unrevealing choice of bets: a general

dislike for gambling, a sense of loyalty to a political party, an unwilling-

ness to reveal personal beliefs. Nevertheless, if these irrelevant factors

can be identified and excluded, Ramsey's approach provides a clarification of
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the meaning of "degree of belief" that can be used to define the type of

probability that is required. When a measurement of uncertainty is needed,

we can provide a number which indicates our degree of belief in the given

proposition.

But we are left with many problems. For example, one person's probabil-

ities may be better than another's, in the sense that one person may be

better able to pick the correct bets, which more adequately represent his

degree of belief, than some other person. This is the problem of calibration,

or proper estimation of probabilities, which will be discussed in Section 8.

We may also hesitate to call these estimated probabilities "measures of

uncertainty" (or, more properly, "measures of certainty"). "Uncertainty"

seems to suggest a vagueness, an indecision, an ambiguity, which does not

lend itself to a precise numerical characterization. For example, I am quite

uncertain about the future of Israeli-Egyptian relations. I am, in fact, so

uncertain that I would not know how to estimate the probability that the

current peace treaty will last for the next five years. Its chances could be

20%, 50% or 80%, for all I know. I am thus uncertain about my uncertainty.

This is the problem of "cascading uncertainties," in which we are uncer-

tain about our uncertainty about our uncertainty . . . and so on, with no

obvious stopping point. Interestingly enough, Ramsey's method offers us a

way of bypassing this problem, since it presents us with a choice, which must

be accomplished within a given time. We may, Hamlet-like, continue to debate

about the pros and cons, the ifs and the buts, but if we fail to make a
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choice, then we lose any chance at the $10.00 -- or whatever else may be at

stake. This is an entirely realistic picture of the human situation, in

which the military officer or the corporation officer must make a definite

choice within a limited span of time, even though serious doubts may remain

concerning potentially relevant evidence. Uncertainty, then, enters into a

decision at many different levels, but it may be summarized in a single

number, which represents a degree of belief in the projected outcome.

7.1. SUBSTANTIVE VS. NORMATIVE JUDGMENTS

The use of probabilities in connection with intelligence estimates

requires that two numbers be reported to the consumer: the estimate itself,

together with a measure of uncertainty. The latter would represent the

estimator's judgment concerning the credibility or accuracy of the estimate.

Two types of "goodness" are thus required of an estimate: substantive

goodness, or the correctness of the estimate; and normative goodness, or the

correctness of the attached probability. (Cf. Hogarth, "Cognitive Processes

and the Assessment of Subjective Probability Distibutions.")

The substantive quality of an estimate is, of course, of overriding

importance, and it therefore receives the lion's share of the estimator's

attention. It is to improve the substantive quality of projections that he

reviews the current and past history of the nation, studies the capabilities

of its weapon systems, and, in short, performs the work required to produce

an estimate.
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The normative quality of the estimated probability is also important,

however. The eventual user must be able to distinguish a tenuous hypothesis

from an established fact, if he is to make an intelligent decision. The de-

velopment of a U.S. system may depend on whether there is a 20% or a 60%

chance that the USSR will develop an opposing system; and the size and ur-

gency of the U.S. development will depend in part on the probability that the

Soviet development will attain a given size by a specified date.

It is important, therefore, to recognize that probability assessments

play a critical role in the decisions underlying U.S. policy. Uncertainty

plays a part in deter:iining that policy. The converse of this claim may

make its meaning clearer: if a particular level of accuracy of an estimate

does not play a role in any U.S. decision, then it is not necessary to

attain to that level of accuracy. If it doesn't really make any difference

to U.S. policy if the Soviets have 103 destroyers rather than 105, then one

projection is just as good as the other. (The word "good" here -- in "just

as good" -- means the worth of the projection to the user. Obviously one

projection may be closer to the correct figure than another. But it would

not be worth spending any amount of money, or taking an' risk whatever,, to

obtain the more accurate figure -- if, in the end, it really made no difference.

ii the sense in which "goodness" means "value to the user," then one of

these projections is no better than the other.)

The estimated probabilities, which are used to communicate the uncertainty

of a projection, are important to the extent that they can make a difference

to decisions. The current practice, which reports probabilities in
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increments of 10 (10 percent, 20 percent, and so on), thus seems appropriate,

since it is not likely that any finer discrimination could make any signifi-

cant difference to U.S. policy makers and other users of DE projections. In

addition, it would be difficult to justify a finer increment, given the qual-

ity of data available to estimators.

The meaning of "goodness" for a probability assessment is discussed in

more detail in the next section (Section 8). There is no absolute "right" or

"wrong" for an individual probability assessment, but there are better and

worse assessments. If we say, for example, that there is an 80 percent chance

that the Soviets will abandon the Homer helicopter, and it is found that they

do in fact abandon it, then obviously our 80-percent estimate is better than a

20-percent or 50-percent estimate. The more certain we are, the more often we

should be wrong. But unless we (foolishly) claim to be 100 percent certain of

a future event, there is no absolute sense in which we can be found right or

wrong.

Over a large number of estimates, however, whenever we "aim a probabil-

ity of n percent for our figures, they should be found correct approximately n

percent of the time. Probability estimates can then be said to be well-

calibrated or accurat, The scoring rules described in Section 8 provide a

means for measuring the normative goodness of the estimates (as well as their

substantive goodness).
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7.2. ELICITATION OF PROBABILITIES

Several techniques have been developed to assist in eliciting probabili-

ties from the analyst. These generally resemble Ramsey's method, in that they

assume that the primary task is to force a decision concerning the analyst's

degree of belief in a given proposition. Examples of methods used for elici-

ting probabilities are:

o The analyst is shown a disk, in which a pie-shaped segment

can be varied in size. Depending upon the area that it cuts out,

the segment can represent any percentage of the whole area of

the disk. This area is varied until the analyst agrees that it

represents the probability or degree of belief that he holds.

0 As in Ramsey's original suggestions, the analyst is offered a

series of bets. Depending upon the bets that he accepts or

rejects, his estimate of probability can be derived.

o Several experiments have been conducted to determine whether

numerical probabilities (e.g., 0.70), percentages (70%), or

odds (7 to 3) produce the most realistic estimates of uncertainty.

These methods of determining probabilities can be reviewed in the cited

literature. They will not be further discussed here, however, because they do
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not appear to deal with the more fundamental question of arriving at a

realistic degree of belief. Given the need to produce a timely estimate, and

given the evidence available to us, how strong should our belief in an estimate

be? Sections 7, 8 and 9 of this report are intended to assist in answering

this question.

7.3. ALTERNATIVE HYPOTHESES

Two major points were made in subsection 7.1.:

o The degree of confidence that an estimator reports is valid or

well-calibrated under the following conditions: if he reports

that his degree of belief is n% for a large number of estimates,

then n% of the estimates should, in the long run, prove to be

correct.

o The degree of confidence that he reports should be suitable for

use in making a decision, such as the commitment of U.S. funds to

a research and development program. The degree of confidence in

the estimate will assist in determining the degree of risk in

the decision.

Statistical methods, such as those described in Section 6, are available

to assist in the decision process. Automated aids are discussed in Section

10; these might be used to combine various estimates in arriving at a decision.
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Computer-based systems for decision analysis may thus be used to assist in

developing a final decision.

Nevertheless, there is no substitute, in the production of estimates, or

in the estimation of the credibility of those estimates, for a thorough knowl-

edge of the policies and capabilities of the nation under study. The initial

"subjective" probabilities must be based on the estimator's Xnderstanding of

the factors that have entered into an estimate, which in turn is based on his

study of available information concerning the subject. This "intuitive"

process probably cannot be mechanized, since it involves the formulation of

one or more reasonable hypotheses, and the testing of these hypotheses against

all available data. Although research in computer-base artificial intelli-

gence has succeeded in developing programs for performing such tasks, there is

little likelihood that they can be generalized to include the broad range of

data required for intelligence estimates. The problem therefore remains a

task for well-informed, talented human beings, not machines. (Cf. Stuart E.

Dreyfus, "Informal Models of Decision-Making," Forefront, Research in the

College of Engineering, University of California, Berkeley, 1976-77.)

This approach requires that the estimator formulate an initial global

hypothesis concerning the subject under study. For example, the hypothesis

might be, "The N-6 missiles on Yankee class submarines will be replaced by N-8

missiles." It is important to note that without this initial hypothesis, the

estimator would not know what data were relevant and what were not; he would

not even know what data to look for in the flow of information available to

him. However, with the hypothesis available, he can begin to formulate
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additional supporting hypotheses: For example, "With the longer-range mis-

sile, it will be possible for missiles from Yankee class submarines to reach

mid-continental areas in the U.S. without a close approach to U.S. coasts;

they will therefore tend to stay further away from the coastline." A review

of current and past submarine sightings will tend to confirm or disconfirm

this hypothesis. Similarly, other subordinate hypotheses may be reviewed, and

an estimate concerning their likelihood may be combined with that of the

initial hypothesis (using the statistical methods described in Section 6 or

the more informal suggestions of Section 9). A review of supporting evidence

for the hypothesis will provide the estimator with a basis for roughly deter-

mining the uncertainty of the hypothesis.

A valuable next step will then be the exploration of alternative hypothe-

ses. In the example, suppose that the N-6 missiles are not being replaced by

N-8 missiles. What alternative courses of action could the Soviets take to

solve the problem of providing a missile capability for reaching mid-con-

tinental Korth America? Several hypotheses may be generated and tested

(including the possibility, of course, that the USSR does not plan to deploy a

submarine-launched missile capable of reaching the mid-continent). Each

alternative hypothesis is developed and reviewed, supporting data for each

hypothesis are collected, and credibility estimates for the set of alternative

hypotheses are prepared.
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7.4. CONSISTENCY

An important constraint upon probability estimates is that they must be

consistent among themselves. While it is possible to develop a full statisti-

cal calculus defining the meaning of "consistency" for probabilistic judg-

ments, the informal approach described here does not seem to justify this

formal a treatment. It is nevertheless important to notice what is meant by

the consistency requirement. In a formal system of probabilities, the follow-

ing rules must hold:

o Every probability must be greater than or equal to 0.

o The probability of the certain event is 1.

o If two events are mutually exclusive, then the probability that

either of them will occur is the sum of their individual probabili-

ties.

From these rules and the appropriate definitions, we can derive some

additional rules, such as these:

o The probability of the impossible event is 0.

o The probability that an event will not happen is one minus the

probability of the event itself.

o The probability of any event lies between 0 and 1, inclusive.

Another observation might be that, in a consistent system of beliefs:
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o If the assessed probability of A is greater than that of B, and that

of B is greater than that of C, then the probability of A must be

greater than that of C. (This rule, which is obvious when we treat

probabilities as numbers, may not be equally obvious when probabili-

ties are reported in verbal terms, such as "very likely" or "some-

what likely.")

While the rules for consistency of a system of beliefs may seem intui-

tively obvious, to the point that they scarcely need mentioning, it is never-

theless difficult to maintain them in a very large system, like the computer

systems reviewed in Appendix C. In general, human beings have a great many

beliefs about a great many things, and they are rarely forced to integrate all

these beliefs into a consistent system. Instead, when conflict among beliefs

occurs, they tend to make ad hoc judgments concerning the best way of resolv-

ing the conflict. But this type of ad hoc resolution is not available when

the conflicts occur as part of a set of estimates, such as those that appear

in the DIPP. If a conflict were to occur in probability assessments attached

to the DIPP, the consumer would have no way of knowing how to resolve them.

It would be important, then, to insure some measure of consistency among the

probability or uncertainty assessments incorporated into the DIPP.

Given the manual methods for preparation of DIPP estimates currently in

use, there is probably no automatic way of locating and eliminating conflicts

among the probability assessments. Instead, it would be most important to

review the entire set of probability (or uncertainty) measures to determine

that they meet the requirements stated here.
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One obvious objection to this procedure is simply that the probabilities

which are determined-in such an informal manner are not rugged enough to be

treated in any mathematically sophisticated way; we simply cannot take these

j "subjective" probabilities that seriously. Thus, if probabilities are simply

"plucked out of the air," as some estimators have suggested that they are,

they do not have the mathematical validity that would be required for combin-

ing them, aggregating them, or reporting them as correct to the fifth decimal

point.

The reply is simply that a test for consistency may be used to test the

rough estimates, in order to improve their quality. When an inconsistency is

found, the estimator is challenged to determine how to resolve it. This will

be particularly true in the discussion of calibration in Section 8. The

purpose of such exercises is to improve the quality of probability estimates,

not to treat the estimates with more respect than they deserve. In Section

11, we will describe a mathematical approach to the detection and resolution

of inconsistencies.

Laboratory experiments have frequently given the impression that proba-

bility assessments are much more difficult than they are in practice. There

are several reasons for this:

o One would be the use of college students in psychology courses for

many of the experiments; as naive estimators, they cannot always be

expected to behave like area experts with several yea'-s of experi-

ence. As will be noted in Section 8, experiments using experienced
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weather forecasters, in their customary tasks, have shown them to be

capable of producing accurate probability assessments. Since intel-

ligence estimators are frequently faced with ill-defined, unique

tasks, they may not perform as well as did these forecasters. But

they may be able to perform better than inexperienced college stu-

dents.

0 A second reason for supposing that probability assessment is ex-

tremely difficult is that many of the examples are unrealistically

j broad in scope. Subjects were asked to respond to questions like:

"What is the probability that Russia is about to attack the UAR?"

(Barbara Heinrich Beach, "Expert Judgment About Uncertainty," p.

21). While it might be reasonable to ask for an assessment of this

probability during 1979, it would be extremely difficult, even for

an area expert, to project a probability over the next ten or twenty

years. Radical changes in governmental policies in the USSR, to say

nothing of those in Egypt, could rapidly make any such projections

obsolete. But DE's projections are specifically designed to exclude

broad, radical changes in governmental policies, and to deal with

estimates under well-defined assumptions concerning attitudes and

capabilities of the nation under study. Given this limitation of

scope, DE's probability assessments can be considerably more accu-

rate than those obtained in university laboratories. (Suggested by

Beach's discussion, pp. 24-25.)
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o Finally, the primary goal of probability estimates is to provide the

basis for decisions concerning future U.S. actions. Thus, the

probability estimates may be extremely rough, yet provide sufficient

information for determining policy. For example, the confidence

interval -- the range from "high" to "low" estimates -- is nominally

set at a 75% level, a level which is not taken especially seriously

by the estimators. In the opinion of estimators, the actual figure

may range from 50% to 90%, depending on the accuracy of the data on

which it is based and on the length of time over which it is pro-

jected. Nevertheless, for the purposes of the consumers, no greater

accuracy may be required. In their present form, the ranges provide

the basis for the necessary decisions -- a "worst case," a "best

case," and a "most likely case" -- on which a realistic U.S. policy

can be based. At the same time, any means which can be used for

improving the quality of the probability estimates will provide the

basis for better policy decisions.

7.5. A NOTE ON SCIENTIFIC METHOD

Much of the history of scientific method, from the time of Plato down to

the present, has been that of a search for absolute certainty, of the type

which is obtained in pure mathematics. Scientists have felt that it was their

job to attain a level of proof which would allow no room for uncertainty.

During the Seventeenth Century, for example, to say that something was "proba-

bly true" was regarded as an admission that a conclusive proof could net be

found.
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It was only during the second half of the Seventeenth Century, in fact,

that the foundations of probability theory were being laid; until that time,

no firm methods of proof using probabilities were available.

Much of our knowledge nevertheless is probable, not certain. While

mathematics and symbolic logic may attain to absolute certainty, they do so

only so long as they remain abstract; the moment that mathematical theorems

are applied to the real world, their certainty vanishes -- we never find a

perfect circle or a perfect triangle in the real world, and we are therefore

never certain whether our pure geometry can be applied to the objects that we

find there. All our measurements are inexact, and therefore applied mathema-

tics is always inexact.

This lack of certainty is endemic to the social sciences, and particular-

ly to estimative intelligence. Here it may be difficult or impossible to

determine the intentions and choices of human beings, particularly when these

intentions and choices are projected into the future. To this must be added

the uncertaintly that is introduced through secrecy and deception; essential

data are concealed from us, and apparent data are deliberately falsified.

The underlying logic of the scientific method, under conditions of uncer-

tainty, nevertheless remains applicable. It begins with a problem to be

solved. One or more hypotheses which may constitute solutions to that problem

are formulated. Data are gathered which may tend to verify the hypothesis.

In practical applications, definite time and cost constraints are applied

during the data-gathering phase, since decisions must be made in real time,
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and since resources are limited. On the basis of the available information, a

choice is made among the hypotheses.

The final choice will be probabilistic in form. It is an answer to the

question, "How likely is this hypothesis in competition with other available

hypotheses?" The answer to this question provides an answer to the question,

"How uncertain is this estimate?" An estimate is uncertain to the extent that

other hypotheses can explain the available data.

In practical terms, consider the hypothesis, "The Soviets are construct-

ing an ABM system." Data to support this hypothesis include the construction

of a large radar installation at Sary Shagan, and tests of intermediate-range

missiles at Kapustin Yar. The probability of the hypothesis will be a func-

tion of the probability of any competing hypothesis that can explain the same

data. Specifically, the question to be asked is whether the radar installa-

tion might be used for some purpose other than the detection of incoming

missiles, and whether the intermediate-range missiles might be used for some-

thing other than destruction of incoming missiles.

The estimator thus must act as a devil's advocate, either for himself or

for other estimators, in formulating and defending alternative hypotheses. In

the end, all competing hypotheses may be ranked in order of likelihood, and

probability values assigned to each of them, on the basis of their ability to

explain (or make sense of) the available data.
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Note again that the data-gathering process is an active process; data are

gathered for a specific purpose: the verification of one of the hypotheses

under test.

7.6. UNCERTAINTY IN THE DATA

Within the informal model of the scientific method sketched in the pre-

ceding subsection, the data are properly treated as "givens," with essentially

zero uncertainty. While this approach is appropriate for a laboratory situa-

tion, it clearly does not apply in most areas of historical research, and it

certainly does not apply in estimative intelligence. The estimator must work

with reports, estimates, and opinions.

DE does not usually work directly with raw intelligence -- with un-

screened reports, uninterpreted radar data, or other direct sources of infor-

mation. Occasionally an estimator may have the opportunity to tour an Eastern

European nation, and actually to see some of their weapon systems at first

hand; but while such first-hand observation helps to give a sense of realism

to DE's projections, it probably is not as helpful as the detailed specifica-

tions prepared by experts in current and basic intelligence.

Firm, well-documented information is available concerning capabilities

and numbers of most Soviet weapon systems. Data concerning naval systems may

be somewhat better than data concerning smaller, better-concealed systems.

Information concerning Chinese capabilities is considerably less cerlain, due

in part to the lack of suitable observers in the PRC, to better concealment of
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many of their installations, and to a general lack of knowledge concerning

Chinese attitudes and methods. Information from some NATO nations, based on

governmental reports, may show a consistent upward or downward bias. The

initial data with which DE works nevertheless have generally passc- through at

least one stage of evaluation and can therefore be treated as givens; at

worst, the initial data have a known degree of uncertainty.

Order of Battle (OB) information constitutes a special case. Since it

represents an official estimate of current force levels, it is taken as the

base-line upon which DE projections of future levels are f'unded. In addi-

tion, in evaluating past projections, the most recent OB estimate is taken as

a "true" value; failure to predict the OB value represents an "error" in the

projection.

The OB values nevertheless are estimates which are sometimes found to be

in error themselves. For example, more accurate photographic equipment may

lead to a substantial increase in the estimates of the number of ICBM instal-

lations, indicating that previous estimates were too low. As a result, pro-

jections which were based on the earlier OB values will be found to be incor-

rect, with an error equal (in numbers) to the error in the OB. Errors in the

OB thus introduce a degree of uncertainty into projections which will be equal

to the degree of uncertainty in the OB itself. Our information on OB errors

is not precise enough to permit a quantitative measure of the uncertainty that

such errors introduce. (Methods for obtaining such a measure are described in

Section 8.) Nevertheless, experienced analysts should be familiar enough with

such errors to permit a reasonable estimate of them. In particular, it has
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been found that OB values for the PRC are more likely to be erroneous than

those for the USSR, and thus that the degree of uncertainty introduced into

PRC projections will be greater. Again, the estimates of naval systems are

much more likely to be accurate than those of other, more easily-concealed

systems; there will therefore be less uncertainty in the projections of naval

systems than in those of other systems.

Finally, projections must be based on opinions obtained from area ex-

perts. The quality of such opinions will vary widely; one of the tasks of the

estimator is to seek informed, dependable opinions concerning future develop-

ments in the area under study.

7.7. UNCERTAINTY IN THE MODEL

It has been suggested in this report that the model used for DE projec-

tions is essentially that of scientific method as it has been traditionally

applied in history and the social sciences. A major role is played in this

predictive model by the intentions, as well as the capabilities, of the nation

under study. It may be assumed, for example, that the Soviet Union intends to

develop a capability for surviving a major nuclear war, and that this capabil-

ity will require the existence of a suitable civil-defense system. Training

bi programs and equipment will reflect this need. It will be possible to inter-

pret the presence of a large number of troop transports as equipment for

evacuating the civilian population: underground structures can be interpreted

as shelters.
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In short, the general assumptions concerning Soviet policy can assist in

interpreting information about their facilities and actions. The data in the

preceding example would have rather a different meaning if it were assumed

that the Soviets were preparing for a land war against the Chinese with con-

ventional weapons. The troop transports would become vehicles for transport-

ing military forces, the underground excavations might be production facili-

ties or storage areas.

Generalizations concerning Soviet intentions, therefore, function as

hypotheses in an overall model. Such hypotheses may be supported or under-

mined by available information concerning Soviet capabilities and actions.

Again, it is important to emphasize the necessity of some general hypotheses

concerning the policies and intentions of the nation under study. Without

such hypotheses, there is no way to determine which data may be relevant or

irrelevant to the projection.

Since data concerning a potential adversary will always be incomplete and

subject to error, the general hypotheses themselves will also be uncertain.
It is not likely that they will ever be completely verified; and existing data

may always be found which tend to undermine even the most plausible thesis.
,: The suggested approach, therefore, will be to formulate alternative hypotheses

concerning the adversary's intentions. In the example outlined above, the

alternatives were: (1) an intensive civil-defense effort, and (2) a possiblei attack on the PRC. These two policies are, of course, neither mutually exclu-

sive nor exhaustive--the USSR may choose to follow either, both, or neither--

and the probabilities for them may therefore add up to a number which is
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preater or less than oue. These probabilities may be estimated for each of

the competing hypotheses, based on the data available to the estimator.

7.8. SUMMARY

In this section, several approaches to the assessment of probabilities,

which provide a quantification of the uncertainty present in intelligence

estimates, have been described. While there is no purely mechanical way of

determining the probability of a projected event or development, there are

nevertheless several ways of improving the quality of probability assessments:

o Intelligence estimators can be assisted in visualizing the meaning

of probabilities by describing various wagers. Flipping a coin, for

example, helps to clarify the meaning of a 50 percent probability.

o A distinction between substantive and normative goodness in the

assessment of probabilities has been drawn. Experimental evidence

has suggested that development of substantive goodness (based on

knowledge of the subject area) improves the quality of normative

judgments (ability to assess probabilities correctly). Probability

assessments can be evaluated through the use of a scoring rule, like

those to be described in Section 8.

0 A serious problem is the provision of feedback to the estimator, to

permit him to see where errors have occurred in the past. The
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Institutional Memory, to be described in Section 8, is one tool to

assist in this process.

0 Another approach to probability assessment is the use of alternative

hypotheses, in which the comparative probabilities of various

scenarios are assessed. A more detailed description of this proce-

dure, together with examples of its use, will be found in Section

11.

o Several rules for determining the consistency of probability assess-

ments were described. A discussion of methods for evaluating and

resolving inconsistencies in probability assessments is included in

Section 11.

'I
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SECTION 8

CALIBRATING UNCERTAINTY MEASURES

"A great part of the information obtained in war is contradictory, a

greater part is false, and by far the greatest part, somewhat doubtful." --

Karl von Clausewitz

Measures of uncertainty are valuable insofar as they provide the consumer

with guidance in the use of the estimates to which they are attached. Al-

though a rough, verbal measure of uncertainty ("It is likely that . . .

will be helpful to the consumer, a more precise statement ("There is a 70

percent probability that . . .") will be of greater value, for the reasons

noted in Section 3: lack of ambiguity, usefulness in gaming and decision

analysis, and a better basis for evaluating estimates.

Advantages such as these have encouraged the use of numerical measures of

mcertainty in conjunction with projections and other estimates. To be effec-

tive, however, probabilities must be calibrated; this means that in the long

run, if a probability of A% has been attached to a large set of estimates,

then n% of those estimates should be found to be correct. Calibration is the

process by which an estimator's probabilities are adjusted upward or downward

to make them approximate the ideal more closely.
I,

Calibration has been intensively studied in several areas other than

estimative intelligence; weather forecasting is the most-studied area. We
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should take care in applying the results of these studie to estimative intel-

ligence, which differs from weather forecasting in the following ways:

o Studies of weather prediction have concentrated on a simple, dichot-

omous outcome: rain or no-rain. Intelligence estimates generally

consider a much wider range of possible outcomes.

o Weather forecasts can be verified as correct or incorrect within a

few days; feedback to the forecaster is very rapid. Feedback to the

intelligence estimator may take several years. Thus, the opportu-

nity for learning from one's mistakes is much smaller.

" The number of weather forecasts is much larger than the number of

intelligence estimates. The statistical basis for calibration is

thus much broader.

o Weather forecasts are repetitive, in the sense that the same types

of data are used each day in preparing the same types of forecast.

Intelligence estimates range over many different types of projec-

tion, using constantly changing sources of information.

o Intelligence estimates require the prediction of decisions made by

foreign leaders, which may be unpredictable in principle, and which

are certainly difficult to predict in practice. While factors which

control the weather are sometimes difficult to predict, they are

iphysical in nature, and thus are predictable in principle.
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o There is an accepted methodology for weather forecasting. There is

no comparable methodology for estimative intelligence, where the

variety of problems encountered and the wide range of potentially

relevant data make each problem unique.

It does not seem likely, then, that results obtained in studies of

weather forecasting will be directly applicable to problems in strategic

intelligence. Such a conclusion would apply with even greater force to the

differences between estimates obtained from college students (or other similar

groups used in psychological studies) and estimates produced by professional

intelligence analysts.

Without attempting to ignore these caveats, however, it should be possi-

ble to learn a great deal from studies of weather forecasting. In particular,

they will be used here to assist in developing a general approach to the

calibration of probability estimates. In addition, laboratory studies will

provide several suggestions, to be reviewed in Section 9, concerning frequent

errors that are made by humans in assessing the probability of future events.

It is important to determine what constitutes a "good" or a "bad" esti-

mate, and it is for this purpose that the earlier studies of weather forecast-

ing and other types of prediction will be valuable. (In this report, we do

not distinguish between "forecasting" and "prediction.")

We begin in subsection 8.1. with an initial discussion of uncertainty as

contrasted with credibility, in an effort to determine which of these will be

8-3

i i li . '' " ' ' ..... ...... ..... ' ,.. .... . .



found most valuable by consumers. The partially successful use of probabil-

istic predictions by weather forecasters is discussed in subsection 8.2., and

the use of scoring rules is reviewed and criticized. Subsection 8.3. proposes

an institutional memory to assist in calibrating estimates of uncertainty.

Finally, subsection 8.4. describes techniques for assessing uncertainty in

historical data.

8.1. UNCERTAINTY AND CREDIBILITY

We are always uncertain about the future. Whenever future events depend

on human judgments, or when there is any risk of unexpected or chance events,

our predictions can be falsified by the outcome. Intelligent planning and

action nevertheless require that we predict the future as the basis for our

decisions.

Practical decision-making requires several types of estimate:

o The likelihood that relevant events will occur -- that a given level

of production will be achieved by a potential adversary, that a

given weapon system will be deployed, etc.

o The degree of risk or benefit that will accrue if the event occurs

or fails to occur.

o The time at which the event may occur, or the time-span over which a

capability is available.
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o The kind of counter-measures that may be required to achieve various

levels of response.

o The time and cost required to develop counter-measures.

These and other factors enter into the decisions of U.S. and foreign

leaders. Factors concerning probabilities or likelihoods clearly play an

essential role in the decision process. The USSR, for example, is not likely

to replace the Scarp Mod 5 missile if the cost of the replacement is greater

than the benefits that are alleged for the new model, the risks involved in

the use of liquid fuel appear to be too great, the estimated likelihood that

the missile would be required against a threat from the U.S. is not high, and

so on. Measurements of uncertainty thus enter into the Soviet decision. For

example, uncertainty concerning U.S. intentions must be considered.

Conversely, U.S. intelligence estimators must ascribe a probability to

the Soviet decision; such measurements of uncertainty emerge from the Soviet

decision process. In the example, this becomes the estimate of the probabil-

. ity that the Soviets will replace the Scarp Mod 5 within a given time span.

(The actual estimate will probably include a timetable for phasing out the Mod

5, with an estimated probability distribution for the numbers of missiles at

each date.) The resulting estimates enter into the decision of U.S. intelli-

gence consumers, where they are combined with information concerning U.S.

policies and goals, estimated costs, etc. In short, estimates of uncertainty

enter into both U.S. and Soviet decisions.
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The purpose of the preceding discussion has been to motivate our choice

of a measure of uncertainty. It requires a definition of "uncertainty" which

is somewhat different from that of ordinary language. On the other hand, this

definition is consistent with the terminology and methods of research in

decision analysis, particularly with those studies which use Bayesian methods.

It is a definition which fits neatly into a model of the decision process.

The meaning of a degree of belief can be partially formalized and clari-

fied as follows. It is well-calibrated when, for all estimates to which it

ascribes a value of n%, in the long run n% of them are found to be correct.

If the estimated probability is too high, then we are said to be over-confi-

dent; if it is too low, then we are under-confident.

A degree of belief can be quantified in terms of real numbers, ranging

from 0.0 to 1.0. When its value is near 1.0, this means that we are complete-

ly confident in the proposition to which it is attached. (Note the important

difference in meaning from credible, as in "It is completely credible that the

Soviets are planning to use nuclear weapons against the Chinese." The meaning

of "We are completely confident " is approximately the same as "It is

completely certain . . ." in the sense that either phrase means that we would

be willing to attach a high probability to the proposition which follows.)

When our degree of belief is close to 0.0, this means that we believe

that the proposition is false, and we are completely confident in rejecting

it. (This meaning is different from "It is completely incredible that . . .

since we may be confident in rejecting something without claiming that it is
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incredible: I am quite confident that the Soviets are not now launching

nuclear missiles against the Chinese capitol, but I do not think that some

such action is incredible. The meaning is also different from "It is complete-

ly uncertain that . . ." To be completely uncertain is to have no idea what-

ever whether a proposition is true.)

Several rules will be listed, in verbal form, for the combination of

estimated probabilities (where "estimated probability," "subjective probabil-

ity," and "degree of belief" all are taken to have the same meaning). The

rules could, of course, be translated immediately into symbolic formulas, but

there seems little point in doing so at this time.

o The estimated probability of a proposition can be measured by real

numbers in the range 0.0 to 1.0.

1- 0 As the estimated probability of a proposition increases, the esti-

mated probability of its negation decreases; the estimated probabil-

ity of the negation of a proposition is completely determined by the

'I .estimated probability of the proposition itself.

o The estimated probability of the conjunction of two propositions is

less than or equal to the estimated probability of either of the

two.

o The estimated probability of the disjunction of two propositions is

greater than or equal to the estimated probability of either of the

two.
8-7
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0 The estimated probability of the simultaneous truth of two proposi-

tions is a function of the estimated probability of the first, given

the second, and of the estimated probability of either proposition

taken separately (i.e., Bayes' theorem applies).

These rules could provide material for a formal treatment of measure-

ments of uncertainty. There are, however, a number of informal constraints

that do not appear to be amenable to formal treatment, but which may be of

equal importance in the quantification of uncertainty. For example, we may

make the following claims:

o New information will increase or decrease the estimated probability

of a proposition, depending on (a) the estimated probability of the

new information, b) its independence from existing evidence (it

can't simply repeat evidence that we already have considered), and

(c) the degree to which it confirms or conflicts with the proposi-

tion. I

o Cascading uncertainties may make the estimated probability of a

proposition indeterminate. For example, we may not have sufficient

data to determine the credibility of a source; thus the measurement

of credibility will be uncertain.

o As new information becomes available, the estimated probabilities

will vary over time. Maintaining up-to-date probability estimates
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throughout a system of interacting estimates has proved to be ex-

tremely difficult.

o The estimated probability of an event or development may be changed

by changes in policies or capabilities of a potential adversary.

Such a change does not show that the earlier estimates were "wrong";

it shows that some of the assumptions on which they were based have

changed.

While the informal rules will make it difficult to develop a completely

formal model for the assessment of probabilities, the formal and informal

rules will make it possible to review estimates for consistency.

For example, if we estimate that the probability of p is 50 percent, and

the probability of q is 60 percent, we should know that the probability of p

and q cannot be more than 50 percent. It could be less; it could even be

zero, if p and q are mutually exclusive.

8.2. PROPER SCORING RULES

A proper scoring rule is a device for assisting forecasters in calibrat-

ing their estimated probabilities. Such rules have been intensively studied

in connection with weather forecasting, in which predictions are often stated

in terms of probabilities: "There is a 20 percent chance of rain tonight."

Probabilistic predictions like these are neither completely right nor complete-

ly wrong, unless they are stated as "100 percent" or "0 percent."

4 8-9



Some probabilistic predictions are nevertheless better than others. They

are better to the extent that they give high probabilities to the events which

actually occur, and low probabilities to those which do not occur. We need a

scoring rule to measure the degree to which one probabilistic forecast is

better than another.

One simple -- and misleading -- scoring rule was used in earlier apprais-

als (1974-76) of DE projections. This can be called the "hit-or-miss" scoring

rule. It simply counts the number of times that projections have been correct

(the hits) and compares this number with the number of times that they have

been incorrect (the misses). The result is stated as a percentage: "You've

been wrong 70 percent of the time."

If the hit-or-miss scoring rule were taken seriously, it would have the j¥
effect of pressuring the estimator into hedging his bets by increasing the

spread between High and Low estimates. The wider he makes these spreads, the

higher his score. If he says, for example, "By 1984, the Soviets will have

between 0 and 56 Foxtrot submarines," he is fairly certain to be right -- and

to get a high score -- since only 56 Foxtrots were produced. But this heavily-

hedged projection will not be of much help to the intelligence consumer, who

really needs a less wide-ranging estimate. The hit-or-miss scoring rule is

thus an improper scoring rule, since it encourages the estimator to produce a

less-useful estimate.

Another type of improper scoring rule might be called the "direct" scor-

ing rule. Suppose that we give the analyst a score of 70 every time he assigns
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a probability of 70 percent to the actual outcome, a score of 80 every time he

assigns a probability of 80, and so on. Thus, the higher the probability that

he assigns to the actual outcome, the higher his score.

But the direct scoring rule is also improper, because it encourages the

estimator to falsify his predictions. Specifically, he finds it possible to

raise his score if he "goes for broke" -- that is, if he assigns a 100 percent

probability to events that he believes likely, and a 0 percent probability to

events that he believes unlikely, without attempting any of the finer shades

of discrimination.

But this go-for-broke strategy would not be useful to the consumer, since

it would encourage an untoward degree of overconfidence in the predictions.

The consumer needs to know, with somewhat more precision, how likely the

prediction or forecast is. For this reason, the "direct" scoring rule is

improper, since it encourages the estimator to produce misleading estimates of

probabilities.

A number of "proper" scoring rules have been developed to meet objections

like these. They have the property of maximizing the analyst's score when his

probability assessments are properly calibrated. A proper scoring rule will

give the analyst a higher score when he assesses probabilities correctly.

Several scoring rules were described in the TEAMS Final Report and could

be used in evaluating DE's performance. One of the simplest of the proper

scoring rules is the logarithmic rule: this is simply
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-log (p)

where p is the probability that the estimator has assigned to the event which

actually occurred. For example, the estimator claims that there is a 70

percent likelihood that all Bear F aircraft will be withdrawn by 1980. In

1980, it is found that all Bear Fs have been withdrawn. He then gets a score

of -log (0.70) = 0.15. On the other hand, suppose that some Bear FS are still

sighted in operation at the end of 1980. The analyst has allowed only a 30

percent chance (100 - 70) for this event. He then gets a score of -log (0.30)

= 0.52. (Obviously, he is receiving a higher score for a worse estimate; the

lower his score, the better.)

The primary advantage to the logarithmic scoring rules is that they

encourage better calibration. There is a penalty for underestimating or

overestimating the probability attached to a projection, and the analyst is

thus rewarded for estimating the probability as correctly as possible. (It

should be noted that substantively better projections also receive better

scores. Two factors enter into the scoring rule: the accuracy of the projec-

tion and the calibration of the assigned probability.)

Present TEAMS designs include a scoring rule, which may be applied to the

numerical projections in DIPPOLS. It would be possible to extend the use of

scoring rules to include other data, such as the probability estimates in-

cluded in various DE reports. Such an extension is not recommended at this

time, however, for several reasons.
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First, as noted in the introductory discussion in this section, the

character of DE's estimates is quite different from that of weather forecasts,

and there does not appear to be sufficient warrant -- for the reasons stated

-- for extending the scoring rules now incorporated into TEAMS.

Second, several difficulties have been noted in the use of proper scoring

rules, even in the weather forecasting applications for which they were de-

signed. (Allan H. Murphy and Robert L. Winkler, "Forecasters and Probability

Forecasts: Some Current Problems," Bulletin American Meteorological Society,

April, 1971, pp. 239-247). Among the problems that Murphy and Winkler identi-

fy are these:

o Eorecasters for both the National Weather Service and the Travelers

Weather Service tended to hedge their forecasts (i.e., move them

closer to 0.50), in the belief that they would receive higher scores

in this way, even though the proper scoring rules were intended to

discourage this kind of hedging.

o The go-for-broke effect can also occur, according to Murphy and

1. Winkler, with a forecaster who is near the bottom of the status

ladder. He has nothing to gain or lose from the production of

mediocre predictions, but if he can score a few spectacular suc-

cesses, he has some chance for advancement. He gambles, then, by

exaggerating his estimated probabilities, in the hope of producing a

few high scores. This is because he has a great deal to gain from a

high score, and nothing much to lose from a low score.
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Thus, the use of scoring rules has not proved wholly successful even ir

the field of weather forecasting. The primary problems for estimative intel-

ligence, however, are:

o The great variety of types of estimate which are made, which rarely

provide the kind of statistical basis needed for adequate calibra-

tion.

o The long time required for feedback: from five to ten years may be

needed before an estimator knows whether his earlier projections

were correct.

For these reasons, it is difficult to recommend the use of proper scoring

rules for applications other than the numerical projections of the DIPP. In

Section 2, an alternative approach is provided.
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SECTION 9

DETECTING AND ELIMINATING BIAS

Humans do a poor job of estimating their own uncertainty. Generally,

they are far more confident about their judgments than the evidence would

warrant. At other times, they may be inclined to hedge -- to overstate their

uncertainty in an effort to avoid the penalties for error.

In this section we shall review some of the research that has recently

been directed at the question of human bias in estimates of uncertainty. We

might expect that if people know something about the common biases that may

occur, they may be able to correct them. As we shall see, however, this last

expectation remains a rather forlorn hope; there is no clear evidence that

people can correct their errors, even when they know that errors occur. What

is needed is a better understanding of the estimative process itself; if

estimators are skilled at developing estimates, they also tend to be better

judges of the uncertainty in their estimates. The study of bias will be most

valuable, then, in helping to clarify the nature of the estimative process.

The subsections present the various biases in the assessment of uncer-

tainty that have been experimentally observed and studied. There is not yet

4i .sufficient information concerning DE's estimates of uncertainty to determine

the direction and quantity of bias that may be present in them. A review of

common biases will nevertheless provide some guidance in determining the types

4 of errors that humans frequently make in their attempts to assess their own

42 uncertainty.
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Each of the subsections contains a discussion of a type of b$as that has

been observed and studied. The first of these, subsection 9.1., is of partic-

ular importance in this report, since it represents an error that frequently

occurs in outside evaluations of estimative intelligence. In the relevant

literature, it is called "hindsight bias"; more familiarly, it is "second-

guessing," the "prediction" of events after they have already occurred. Other

subsections will review typical errors that are made in the assessment of

uncertainty, and will suggest applications to the probability measures that

have been recommended to DE.

In the instructional manual (Appendix B), practical suggestions for

identifying and eliminating biases will be presented.

9.1. HINDSIGHT BIAS

If someone were to ask, "How likely did it seem to you in 1977 that the

Shah of Iran would be overthrown? ," we would think back to the evidence that

was available then: massive student protests among Iranian students in this

country, the presence of secret police and the other paraphernalia of dictator-

ship, and perhaps other signs of a fragile, rigid regime. With this informa-

tion, we certainly should have seen that the Shah was about to crumble. If we

V also had the special sources of information that were available to intelligence

officers in 1977, then we certainly should have predicted the rebellion that

was then immanent. Why, then, was it not predicted?
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"Hindsight bias" is the claim that the future is fairly easy to predict.

As we look at past events, we can see the chain of causes and conditions that

made them possible, that may indeed have made them inevitable. For each of

them, we ask: "Why didn't people see that it was coming?"

The answer to this question is complex, and it lies at the heart of the

problem of estimative intelligence:

o Intelligence producers have too much information. They are over-

whelmed with data that far exceed their capacity to ingest and

digest them.

o The information that they have is not structured around the specific

events that they are supposed to have predicted. While there may

have been enough information to have enabled them to predict the

overthrow of the Shah, for example, they did not have it neatly

filed in a drawer marked "Evidence of forthcoming rebellion in

Iran."

o Even if they did accumulate the proper information in time, there

are too many chance factors that might intervene. For example, what

would have happened to the rebellion if the aging Khomeni had become

violently ill'at the critical moment? What if the Shah had been

4 'more conciliatory? And so on, through an indefinite number of

variables.
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o Over the long run, intelligence producers have to avoid the "cry

wolf" response that comes when they predict dire events too often --

and the wolf fails to appear. Simply to maintain their credibility,

they have to avoid premature and unnecessary warnings.

These are some of the reasons for failure to predict the future accurate-

ly. Hindsight bias is the claim that they should have predicted it far more

accurately than they did. In terms of intelligence projections, it would

demand an unwarranted increase in their degree of belief in specified future

events. The reasoning would be this: "As we look at the past, we see that

many events could have been predicted on the basis of available information.

We therefore can attain a relatively high degree of certainty concerning

future events. Therefore, our predictions of the future can have a high

degree of certainty."

A second effect of hindsight bias would be the attempt to make predic-

tions based on a simplistic view of the past. Since they can put together a

reasonable scenario that would permit the prediction, say, of the overthrow of

the Shah, this does not mean that they will be able to put together a scenario

for the prediction of other anomalous events in the future. ("Anomalous" is

used here in the sense that Thomas Kuhn uses it in The Structure of Scientific

r" Revolutions: a violation of the laws that make up the currently accepted

world-picture. The world-picture, for Americans in 1977, saw the Shah as an

established, stable ruler. His overthrow violated this picture, and was thus

anomalous.)
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In contrast to hindsight bias, the point of view suggested here is con-

servative. On the one hand, it says that accurate, useful predictions can be

made within the structure of widely-accepted assumptions concerning the goals

and capabilities of the nations of the world. On the other hand, the attempt

to predict major technological breakthroughs, or massive changes in leadership

or policies, is far more difficult and problematic -- no matter what hindsight

bias may tell us.

9.2. OVERCONFIDENCE

A person is overconfident when he or she gives too high an estimate of

the probability of a projected future event. In quantitative estimates,

overconfidence is reflected in too narrow a spread between the High and the

Low estimates.

Research has shown a strong, consistent tendency toward overconfidence,

both among subject-matter experts and among novices, in field situations as

well as in the laboratory:

0 Studies of Las Vegas casino patrons showed irrational preferences

for certain bets.

o Studies of bankers and stock market experts in the prediction of

closing prices for stocks showed exaggerated confidence in the

accuracy of the predictions.
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o Studies of military intelligence officers predicting a coup in a

designated country, the shooting down of a reconnaissance plane, or

an arms shipment from one country to another showed overconfidence

in their predictions.

(See Slovic, Fischhoff, and Lichtenstein, "Behavioral

Decision Theory," p. 15, for references.)

As noted in the discussion of scoring rules in Section 8, there may also

be some pressure toward underestimation, particularly if an estimator is rated

as "1right" or "wrong." Under these conditions, an estimator could be expected

to hedge his projections as much as possible, by underestimating the probabil-

ities of the more likely outcomes. For example, instead of saying, "There is

an 80 percent chance that . . .," he says, "There is a 60 percent chance that

.," which will (a) give him some credit if he's right, and (b) reduce the

penalty if he's wrong. Similarly, he could increase the range from Low to

High, to help insure that the actual value will lie within the range.

It would be pleasant to suppose that the pressure toward overconfidence

(the go-for-broke strategy) is exactly balanced by the pressure toward under-

confidence (the desire to avoid the cry-wolf effect). Obviously, the two

opposite types of pressure operate in different contexts. To avoid overesti

mates and underestimates of probabilities, it is important to be aware of

these pressures.
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9.3. REPRESENTATIVENESS, AVAILABILITY, ADJUSTMENT

What specific techniques do humans use in dealing with uncertain informa-

tion? In some imaginary world populated entirely by statistical geniuses,

they would proceed like this:

o Define an experimental hypothesis for testing.

o Define the experimental population for which the hypothesis is to be

tested.

o Employing standard statistical sampling techniques, obtain a repre-

sentative sample of sufficient size and composition to achieve the

required level of confidence.

o Under experimental conditions, perform a controlled experiment as

required to test and validate the hypothesis.

o And so on, through the sequence of techniques developed by the

experimental sciences.

An appropriate experimental design, following something like this se-

quence, should certainly be used in those situations in which available time

and available information make it possible (and where the cost of the tests

does not exceed the expected value of the results). Unfortunately, estimative

intelligence -- and real life -- rarely makes it possible to carry out the
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full sequence of experimental tests. Intelligence estimates face two major

constraints:

" To be effective, estimates must be available for a decision within

strict time limits, which may not permit a review of all available

data.

o The nature of intelligence data collection is such that important

pieces of information may never become available. Other pieces of

information may be misleading or false.

Strategic intelligence thus represents, in somewhat exaggerated form, the

situation that we all face in real life, where we never have enough time to

investigate fully, and where much of the information that we must use is no

more than rumor, hearsay, and fraud.

Humans have been found to use several shortcuts, or heuristics, in deal-

ing with uncertainties in everyday decisions. These heuristics have a major

virtue: they are fast and efficient. They also have a major vice: they are

prone to errors.

Tversky and Kahneman have identified three frequently-used heuristics:

o Judgment by representativeness: a small sample is taken as repre-

sentative of a large population. We judge the characteristics of a

whole group on: the basis of acquaintance with just a few of its

members.
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o Judgment by availability: an event is judged to be likely, if it is

easy for us to imagine similar events. If, in our imagination, we

can say, "That's just the sort of thing that would happen," then we

tend to overestimate the probability that it will happen.

o Judgment by adjustment: when judging the numbers or sizes of things,

we begin with a known value and adjust it upward or downward to

obtain an estimate of the unknown value. In the process, we often

fail to make a large enough adjustment.

Heuristics like these are likely to play a role in estimative intelli-

gence, where the stringent time requirements and the lack of reliable data

make it necessary to use short-cut techniques.

9.3.1. Representativeness

Judgment by representativeness will occur when it becomes necessary to

make judgments concerning rA total population on the basis of a small or non-

representative sample.

Tversky and Kahneman have identified a "law of small numbers," which is a

fallacious rule by which people tend to make judgments on the basis of a very

small number of samples. For example, if we hear that two Ford Mustangs have

had frequent brake failures, we are likely to generalize to the conclusion

that all Mustangs are subject to brake failures. But our sample size is

obviously much too small to make this sweeping a generalization.
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Because information available to intelligence estimators can be limited

to very small samples, it is important to recognize the high probability of

error in generalizing to larger populations. For example, if we could obtain

information only about the destroyer Bedovy, we might be tempted to generalize

that all four Kildin class destroyers carry 45mm guns (with some high proba-

bility), when, in fact, the Bedovy is the only one that does so. Since infor-

mation concerning Soviet naval vessels is very complete, estimators are not at

all likely to make this particular error; but similar errors are possible

wherever the information is skimpy and the time is short.

9.3.2. Availability

Judgment by availability is the tendency to use the information which is

most easily available, but %hich may not adequately represent the population

from which it is drawn.

Perhaps the best example of this fallacy was the poll undertaken by the

Literary Digest magazine to determine the outcome of the 1936 American Presi-

dential election. The poll indicated an overwhelming victory for Alfred M.

Landon, the Republican nominee, over his opponent, Franklin D. Roosevelt. The

magazine's prediction was, of course, badly mistaken. Its gross error was due

to its use of a telephone survey to obtain its results, at a time when only

the affluent cguld afford a private telephone. Since non-telephone households

included the majority of voters, and since the vast majority of these voters

favored Roosevelt, the poll gave badly misleading results. The magazine

relied on data which were easily available, rather than making the greater
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effort required to obtain data which were representative of the population

from which they were drawn.

Psychological studies have indicated that people use this heuristic to

shade their judgments upward or downward, depending on the ease with which

they can recall similar objects or events. Such factors as familiarity,

recency, and emotional saliency have been identified as affecting recall.

Applying these results to estimative intelligence, we would expect that the

following factors would affect judgments of uncertainty:

o Familiarity. If the estimator is familiar with a paticular weapon

system, capability, or other entity, he will be likely to overesti-

mate its numbers, retention time, or other factors, in comparison

with another system with which he is less familiar.

0 Recency. A recent report, article, or briefing on a given Soviet

weapon will tend to increase the importance of that weapon in the

mind of the estimator. As a result, he is likely to overestimate

the probabilities connected with that weapon, in comparison withfother weapons, which may be equally important but which have been
reviewed less recently.

0 Emotional saliency. We are certainly likely to respond more readily

to the more glamorous and more sophisticated weapons than we are to

the dull, unglamorous ones. As a result, the estimator is more

likely to overestimate the probability that the more glamorous
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systems will be developed and deployed, ignoring the factors that

would encourage development of the others.

Proper experimental design, then, requires that we take care to include

data which are less "available" in the sense described here -- to include

information concerning unfamiliar systems, older systems that we may have

forgotten, and less-glamorous systems that may be overlooked.

9.3.3. Adjustment

Judgment by adjustment is a heuristic in which we begin with an existing

estimate, and raise or lower it in response to new information. This process,

called "anchoring and adjustment" by Tversky and Kahneman, is frequently

insufficient.

This heuristic may have been partially responsible for underestimates of

Soviet ICBM installations during the late 1960's. As Soviet policy changed in

such a way as to dictate rapid expansion of ICBM facilities, U.S. estimates

remained "anchored" to past estimates, and were not adjusted rapidly enough to

take new Soviet policies into account. The result was a series of underesti-

mates. (The underestimates of Soviet ICBMs have been widely publicized and

discussed; this is obviously an oversimplification of the reasons for them.)

The use of this heuristic assumes the existence of a base rate, or com-

monly accepted level of development, production, deployment, and retirement.
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Beginning with this base rate, the estimator makes adjustments upward or

downward to take account of:

o Current political factors

o Shortages or surpluses of materials

o Difficulties or breakthroughs in production

o Changing economic conditions

o Responses to U.S. and other countermeasures

o Problems in training personnel

o Mechanical and other technological difficulties

o Availability of new technology

o Conservatism of Soviet policy

And any other factors that could influence the qualitative and quantita-

tive projections that are required.

If the experimental evidence can be applied to intelligence estimates, it

tells us that these adjustments will not be sufficient; human beings tend to

be conservative in their use of the heuristic, retaining a bias in the direc-

tion of earlier estimates.

An alternative approach, then, would be the use of "zero-base" projec-

tions. Rather than beginning with existing estimates, the analyst would

construct a new estimate entirely from scratch. Past projections would be

ignored, and previous trends would not be used. Current information concern-

ing foreign weapon systems would be used, to which information concerning

9-13



production and deployment rates would add appropriate numbers. Retirement

rates could then be estimated, and the resulting figure would provide the

final projection.

The essence of the zero-base approach would be its lack of assumptions;

nothing would be taken for granted, and every projection would have to be

justified. The zero-base approach differs from the anchoring-and-adjustment

approach, which requires justification only for changes from existing projec-

tions.

The zero-base approach is not recommended here, primarily because there

is no reason to suppose that it would produce improved projections. It is

included simply to show the way in which anchoring-and-adjustment works, and

to suggest a means for avoiding the bias that anchoring-and-adjustment intro-

duces. Essentially, it says: look carefully at the assumptions that enter

into projections, and make sure that these assumptions can be justified.

9.4. NEGLECT OF PRIOR INFORMATION

Another bias which has been widely studied seems almost the opposite of

the anchoring-and-adjustment heuristic. While anchoring-and-adjustment is

conservative, this is an anti-conservative bias, since it is the tendency to

neglect prior information.

"Prior information" is represented by the prior probabilities discussed

in connection with Bayesian methods in Section 6. It refers to the "base
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rate," or the general information that we have concerning the population. In

weather prediction, this would be the climatic information that we have. We

may know, for example, that on any given day in August, the probability of a

snowstorm in Arlington, Virginia, is 0.001. If we then received information

concerning barometric pressure and wind direction that could indicate a snow-

storm, we would nevertheless be very hesitant about predicting one. We are

hesitant, because our prior knowledge makes such a storm very unlikely.

Unfortunately, we are not always hesitant enough in similar sorts of

prediction, according to several experimental studies. Specific information

takes precedence over the general information that we have. In one set of

experiments, for example, an unreliable witness reports that a blue taxicab is

involved in an accident. The witness's testimony is taken to have too high a

probability, given the rarity of blue taxicabs in the overall population.

9.5. CAUSAL MODELS
-.

. . . People predict and explain events by invoking their intuitive

theories about underlying causal factors . . . In making predictions, people

rely on information perceived to have a causal relation to the criterion while

disregarding valid but noncausal information." (Icak Ajzen, "Intuitive Theo-

ries of Events and the Effects of Base-Rate Information on Prediction.")

In general, this approach suggests that the probability of an event is

greater to the extent that we can find causal relationships between the

hypothesized event and the data that we have. As Section 9 will point out,
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this approach is regarded as fallacious, when it ignores the underlying proba-

bilities of the events which it predicts. For example, if massive construc-

tion were observed in a Soviet shipyard, it might be hypothesized that the

vessel under construction is an aircraft carrier. But this hypothesis would

have to be tested not only against the question (1) is this construction

appropriate for the building of an aircraft carrier, but also against the

question (2) what is the probability that the Soviets feel the need for a

balanced fleet capable of world-wide operations, as represented by their Kuril

class aircraft carriers?

9.6. SUMMARY

This section has discussed several areas of bias which have been studied

experimentally and which may be applicable to probability estimates in estima-

tive intelligence. In general, the experimental evidence shows that many

persons have trouble in assessing probabilities correctly, and that it is

difficult to correct their biases.

One problem that may make the task especially difficult for untrained

personnel, like those in college psychology classes, is simply that the ques-

tions deal with unfamiliar material ("Does the UAW have more or fewer members

than the DAR?"), concerning which the subjects feel that they can make onlyC

random guesses about the accuracy of their replies. With a substantial fund

of experience in the subject matter, professionals have been found to be more

realistic in assessing the probability that their estimates are correct, or

lie between specified limits.
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There has nevertheless been little feedback to assist intelligence

estimators in detecting biases and other errors. The long time span required

for verification of their estimates, and the lack of an easily available data

base containing past estimates, have meant that it is often impossible to tell

whether a probability assessment has been satisfactory.

In addition, DIA's estimates are intended to represent a consensus of

several agencies, rather than the opinion of a solitary estimator. This means

that a major focus is upon obtaining an estimate which will be acceptable to

members of the intelligence community. In this context, "better" and "worse"

mean more or less acceptable to others in the community, rather than valid in

some more global sense. The need to represent a consensus, then, seems to add

a conservative bias to the estimates, which cannot easily be overcome.

If this sketch is correct, it would seem that the most valuable role that

DE could play, during the initial stages of the preparation of estimates,

would be that of a devil's advocate, introducing doubts and difficulties

concerning the majority opinion. In this role, the estimator would collect as

much evidence as possible for a minority point of view, and would provide a

critique of arguments underlying the majority position. Such a role would

Ihelp to reduce the overconfidence that has generally been found in probability
assessments. In addition, it should help to provide better arguments to

support the final estimates.
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SECTION 10

COMPUTER-ASSISTED ESTIMATIONS OF UNCERTAINTY

The purpose of this section is to present an approach to computer-assist-

ed methods for the aggregation of measures of uncertainty. A number of com-

puter-based systems have been suggested for the support of intelligence

analysis, and it is attractive to suppose that such a system could be used to

increase the validity of DE's estimates of uncertainty, provide a rapid method

for aggregating them, and assist in the production of outputs for communicat-

ing uncertainty to intelligence consumers.

Some of the systems to be discussed here represent computer implementa-

tions of the methods outlined in Section 6. One approach is essentially

Bayesian -- that is, Bayes' theorem is used to combine known probabilities, in

order to arrive at aggregated probability estimates, and to maintain the

consistency of the estimates of uncertainty. Other systems incorporate logi-

cal structures of cause and effect, more closely resembling the approach

described in Section 5.

The first subsection describes a relatively simple system, which may be

taken as comparable to the Probabilistic Information Processor (PIP) system,

which has been proposed as a tool for strategic intelligence analysis. The

second subsection describes in detail some of the problems that have been

observed in the actual operation of such systems. In the third subsection,

some of the characteristics of a more adequate system are outlined. Appendix

10-1

so

$1



C contains a more detailed technical description of the computer-based systems

discussed here and in Section 6.

10.1. COMPUTER-BASED DECISION SYSTEMS

To provide concrete examples of computer-based systems which could be

adapted to the-production of uncertainty estimates, we shall refer to a class

of medical diagnosis systems. Such systems accept a large body of informa-

tion, often in probabilistic form, concerning the relationships between symp-

toms and diseases. Data concerning individual symptoms are then obtained from

a patient, and a diagnosis is produced, indicating the probability that vari-

ous diseases or other conditions are present.

The internal logic of a medical diagnosis system could incorporate statis-

tical methods like those described in Section 6 of this report. The methods

for determining the probability of a specific disease are similar to methods

for determining the probability that a weapon system will be developed, or the

likelihood that a given level of production will be reached. Both medical

diagnosis and estimative intelligence are concerned with predicting future

events through the use of available information about present events. The

"symptoms" are the data available to the estimator; the "diagnostic procedures"

are general hypotheses concerning the relationships between observations and

the intentions and capabilities of the USSR, the PRC, and other nations of

interest. The "diseases," of course, are their weapon systems.
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MYCIN is one of the best-known of the computer-based systems currently

available. (Cf. Edward H. Shortliffe, Randall Davis, Stanton G. Axline, Bruce

G. Buchanan, C. Cordell Green, and Stanley N. Cohen, "Computer-Based Consulta-

tions in Clinical Therapeutics: Explanation and Rule Acquisition Capabilities

of the MYCIN System.") "It relies heavily upon artificial intelligence (AI)

techniques that were originally developed for problem solving outside the

environment of clinical medicine." It therefore represents a more complete

demonstration of the strengths and weaknesses of the AI approach than any that

have so far been applied to estimative intelligence. It should thus provide a

reasonable test of AI methods in a practical setting.

The ultimate aim of the MYCIN project has been to develop a computer-

based system to which physicians will refer for advice concerning antimicro-

bial therapy. It does not simply output a probable diagnosis, but includes

the justification that underlies the diagnosis. This is important in communi-

cating the rationale for a given response, and thus for communicating the

uncertainty to be attached to it. In this way, the user can reject a given

diagnosis if the rationale appears questionable, or if extra-systemic knowl-

edge suggests an alternative response.

Conversely, MYCIN performs an instructional function; the diagnostician

must follow through the chain of reasoning underlying each diagnosis, thereby

increasing his skill in handling the relevant procedures. The implementation

is interactive, permitting the physician to step through a diagnosis, obtain-

ing and entering more data only as these are required to verify a potential
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outcome. A specific therapy is recommended in connection with the final

diagnosis.

Other systems, including many existing Bayesian systems, fail to provide

an explanation of their decisions, thereby leaving the user with a take-it-or-

leave-it outcome; it would be more helpful to include, as MYCIN does, some

means for permitting the user to review the decision, to obtain grounds for

accepting or rejecting it. The user simply types WHY or HOW to get a detailed

explanation from the system of the type of conclusion it is trying to draw.

The WHY and HOW commands may be repeated, to obtain a complete picture of the

chain of reasoning employed by the system.

The MYCIN program therefore may serve as an initial model of the type of

system that might be applied to quantifying, aggregating, and communicating

uncertainty in estimative intelligence. It is particularly interesting in

that it attaches scores to its various diagnostic rules, using these in such a

way as to output a rough measure of the uncertainty of its conclusions.

MYCIN represents a "judgmental model," in which the relationships between

symptoms and diseases (or observations and predictions, if it were to be used

in certain intelligence applications) are represented in terms of a decision

table. Entries in the table take the form, "If A and B and C are present,

then D may be predicted (with probability p)."

It differs from a "statistical model," in which Bayesian, linear regres-

sion, or other statistical techniques are used to combine probabilities. In a
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statistical model, entries in a table may consist of probabilities, in the

form "the probability of symptom S, given disease D, is p." (Probabilities

are stored in this form, rather than the converse, because these probabilities

are less likely to be affected by epidemic conditions, changes in climate,

etc.) The probabilities are combined to obtain the probabilities of diseases

or other conditions which may be present.

The statistical models are particularly interesting, because they provide

us with examples of systems which implement the statistical techniques which

were described in Section 6. We will claim that if a statistical system can

be made to work for estimative intelligence, for aggregating the quantitative

estimates of uncertainty, then such a system should work for medical diagnosis.

On the other hand, if there are problems in a system for diagnosis, then those

same problems must be considered in a system for estimative intelligence.

Our reason for making this claim is that diagnosis is a simpler and more

straightforward task than estimative intelligence, for the following reasons:

0 Medical diagnosis is based on a highly developed taxonomy, with a

well-documented basis in the prediction and verification of a very

large number of cases. There is no developed taxonomy for estima-

tive intelligence, the number of cases is much smaller, and experi-

ence has not been well documented.

o Diagnosis is generally a repetitive task, in which both reasoning

and testing have been performed many times, using well-defined
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procedures. For this reason, diagnosis is a process that seems

particularly appropriate for computer modelling. While the produc-

tion of estimative intelligence is often repetitive, the presence of

factors that are described by estimators as "intuition" suggests

that its procedures are not always well-defined.

o Medical diagnosis is seen as vitally important, playing a life-and-

death role. It has therefore received a good deal of attention from

agencies which fund medical research. There is no doubt of the

essential role of estimative intelligence, which again may play a

life-and-death role in the nation; but it is only recently that

there has been support for research studies in its methods.

o There is a very large body of recognized experts in medical diagno-

sis, who can provide information essential for the development of a

computer system. The number of experts in estimative intelligence

is much smaller, and their methods are based upon a fund of personal

experience which may be more difficult to communicate to a computer

system designer.

Because the problem of medical diagnosis is similar to the problem of

intelligence estimation, but because it is also a simpler, better-defined

problem, it therefore can' provide us with a test of computer-based decision

systems to determine some potential strengths and weaknesses of such systems.

More importantly, it can show the direction which the development of a comput-

er-based system for aggregating and communicating uncertainty might take. In
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the next subsection, we will review some shortcomings of the systems. The

final subsection will suggest some of the ways in which the shortcomings may

be overcome.

10.2. PROBLEMS WITH DECISION SYSTEMS

Four general approaches to the development of decision systems for aggre-

gating uncertainty may be identified.

10.2.1. Regression Analysis

Regression analysis does not attempt to mimic the procedures of a diagnos-

tician but uses the relations between symptoms and diseases to develop equa-

tions, in which various weights are assigned to the symptoms which may be

relevant to each disease. This approach was found to produce predictions

which were superior to those of experienced human diagnosticians.

Studies in regression analysis have generally shown that this approach is

overkill for problems like diagnosis. Instead of precisely-determined coeffi-

cients to be attached to the various elements that enter into a diagnosis, a

much simpler scheme, in which the coefficients are either zero or one, has

often proved effective.

The interactions among various symptoms may also be important. For

example, the presence of fever plus a flushed face may be significant for one

medical condition, where the presence of either symptom alone would not be
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significant. Or, in an intelligence application, the presence of extensive

radar facilities, together with development of a site for launching interme-

diate-range missiles, could be taken to indicate the presence of an ABM capa-

bility, where either of these developments alone would not be significant for

predicting the presence of an ABM system.

For reasons like this, regression analysis has not been widely used for

medical diagnosis and is not recommended as an approach to computer-assisted

intelligence estimations.

10.2.2. Bayesian Systems

In Section 6, a discussion of Bayesian methods for aggregating and commu-

nicating uncertainty was presented. This approach has been strongly urged as

the basis for computer-assisted decision systems, since it provides an auto-

mated way of correcting some of the human errors in estimation that were

discussed in Section 9 of this report. For example, clinicians have been

found to be too conservative in their estimates of the uncertainty of a diag-

nosis; an automated Bayesian system might assist them in obtaining better

estimates.

The problems involved in the development of an operational Bayesian

system have, unfortunately, proved to be quite overwhelming. The need for

obtaining a large number of prior and conditional probabilities for use in the

system has been especially difficult to fulfill. And if this is true in

systems for diagnosis, it would be even more difficult to obtain a satis-
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factory base for estimative intelligence, where experience is more limited,

where the number of cases is much smaller, and where the appropriate defini-

tions and classifications -- the taxonomy -- are much less stable.

Another major problem for Bayesian systems has been the need for assump-

tions of independence and exhaustiveness among the conditions. For example,

we might assume (a) that there is a 20% chance that the Soviets would attack

Egypt, and (b) that there is a 30% chance that they would attack Cambodia.

However, the chance that they would attack both Egypt and Cambodia, thus

engaging in a two-front conflict, is much smaller than a simple statistical

combination of the two probabilities. In fact, one would suspect that the

probability of the USSR voluntarily engaging in a two-front war is near zero.

Thus, the two actions are not independent, since one would very nearly pre-

clude the other.

Unfortunately, many of the Bayesian systems must assume independence of

the various probabilities, even though this requirement cannot be met in

practical applications to medical diagnosis or to estimative intelligence.

Finally, many of the systems for Bayesian analysis in medical diagnosis

must assume that the diseases are disjoint; but practical experience shows

that two or more medical conditions can occur at the same time. Similarly, we

can expect that two or more military developments may occur.

Like many applications of artificial intelligence research to practical

problem areas, Bayesian systems have suffered from a combinatorial explosion-
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that is, the number of combinations of relevant factors grows much more

rapidly than the number of factors themselves, and thus cannot be handled

effectively either by the system or by its human users.

10.2.3. Branching Logics

Some systems have included branching tree-like structures, essentially

representing a Bayesian decision tree. The user steps through the tree, with

branches chosen by the system, based on information obtained from the user.

Difficulties observed with such systems have included serious problems in

obtaining the probabilities required by the Bayesian approach, the rigidity of

the sequence of decisions that must be made as the user steps through the

tree, and the degree of effort required to modify and update the decision

tree.

10.2.4. Simulated Logics

The approach outlined in the discussion of MYCIN in Subsection 10.1. uses

a combination of logic and probabilistic reasoning to mimic the intentions of

skilled clinicians. For MYCIN, this is a simulation of inexact or probabilis-

tic logics to obtain a "score" for the proposed diagnosis. Because of the

difficulty in estimating prior probabilities for large numbers of correlated,

overlapping events, this score must not beinterpreted as a probability.

Thus, it does not provide a measure of uncertainty as we have defined it in

this report.
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Without probabilities, systems like MYCIN are generally little more than

relational data bases which provide some sort of ill-defined number which a

doctor can use as he sees fit while making his differential diagnosis. For

the consumers of estimative intelligence, such numbers would have little

value, other than to provide a rank-ordering of alternative projections.

10.2.5. Problems in Existing Systems

The problems that have arisen in medical diagnosis systems will be summa-

rized here, since they appear to be very similar to problems that may be

expected to arise in any automated system to assist in estimative intelligence.

o The patient may have more than one disease.

o Symptoms are unrealistically considered independent or uncorrelated.

o The underlying distribution is not completely known.

o Most known probabilities are usually low-order conditional, marginal

probabilities.

o Known probabilities may be obtained from different studies and

therefore may be inconsistent.

o Subject matter knowledge, such as cause, effect, and "intuition"

(i.e., broad understanding of the context), should be used to specify

the distributions.

10-i

LL



o The size of the distributions involved may not be known.

No existing medical diagnosis system deals with all seven of these prob-

lems. Since diagnosis, as noted in Subsection 10.1., is similar to, but less

difficult than, estimative intelligence, it is likely that systems for intel-

ligence applications may suffer from similar difficulties.

It is possible to develop parallels between the difficulties sketched

here for diagnosis systems, and those which might be expected to occur in

intelligence systems. For example, in parallel with the first problem, more

than one military or political situation may be present. Secondly, the vari-

ous pieces of information concerning such situations are not uncorrelated or

independent. Underlying probability distributions are not known. Even when

probabilities are known, they may be inconsistent or unreliable.

The sixth difficulty listed above is particularly significant, and this

may account for some of the resistence to automated systems: most existing

systems cannot incorporate cause-effect relationships and broader subject-area

knowledge which is known to the estimator, but which does not fit the struc-

ture of the particular computer-based system.

Finally, the problem of sample size will be quite difficult for intelli-
gence applications, since the available data may be severely limited. Under

these conditions, it may be impossible to arrive at reasonable estimates for

the probabilities required by the system.
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10.3. A POTENTIAL SOLUTION

Other members of our staff have dealt with the problems discussed here in

connection with systems for medical diagnosis and for other pattern-recogni-

tion applications. We believe that the problems which have arisen in attempts

to apply academic models to real-world situations can be successfully over-

come, if the intended application is known and the system is developed for

effective use in the application.

A full discussion of the recommended approach requires a presentation

which is somewhat beyond the mathematical level of the main sections of this

report, and it is therefore included as Appendix C. The approach described

there is, we believe, adequate to meet the difficulties which have been out-

lined in subsection 10.2.

Implementation of any system will require a review of the methods which

have been discussed in Section 5 of this report. Since the body of knowledge

underlying estimative intelligence methods is not as well understood as that

of medical diagnosis (cf. Subsection 10.3.) or weather prediction (cf. Section

*7), it would be premature to expect that a fully-automated system could be

designed and programmed at once. Instead, a very few functions could be

designed to provide assistance to the estimators, who would still rely heavily

on background knowledge and informal reasoning processes to produce their

projections and other estimates. As the supply of data and experience grows,

4 additional functions could be added, as options, and used whenever estimators
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found them valuable. There is absolutely no reason for using a system that

does not actually assist the estimator in producing better and faster results.

Among the steps that might be found helpful in the development, in chron-

ological order, are the following:

0 Implementation of TEAMS, to provide a rapid method for locating

trends, errors, biases, and uncertainties in previous projections.

TEAMS is essentially a diagnostic device, for locating trouble spots

in the estimative process.

o Development of the DIPPOLS data management system to provide a

uniform method for accessing both current and past projections.

This will assist in determining the degree of uncertainty which was

actually present in earlier projections, and assist in determining

uncertainties in current projections.

o Provide graphic outputs for DIPPOLS/TEAMS which will assist in

showing the degree of uncertainty both in OB data and in DE projec-

tions. Graphic presentations will help DE users to visualize the

uncertainty which has been present in their projections.

o Provide storage space in DIPPOLS for an institutional memory, which

clearly indicates the justification for each projection. In the

terms of this report, it will be the set of hypotheses which have

led to the specific projection, in such a form that any future user
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can readily determine the assumptions that entered into a projec-

tion. Thus, it will be possible not only to determine that a pro-

jection has gone wrong, but also why it has gone wrong.

o As more data concerning the formal character of the estimative

process are gathered, it will be possible to consider automation of

some aspects of the projection process. For example, the use of

time-series analysis for more precise interpolations and extrapola-

tions of trends in the data can be considered. Extrapolation of

present trends can provide the estimator with a base-line against

which to compare projections; trends may continue, or they may

increase or decrease at some rate which can be supplied by the

estimator. Computer-based methods can provide a more precise and

automatic method for projecting trends.

o Artificial intelligence (AI) systems, like the diagnosis systems

described in this section, can be tested on an experimental basis,

to determine their potential usefulness to the estimator. As noted

in Subsection 10.2., there are serious problems in existing systems.

Problems which have been noted in systems for medical diagnosis are

likely to be exacerbated in the more complex, less well-understood

,! context of strategic intelligence production; nevertheless, it would

seem possible that a more sophisticated system, like that described

Iin Subsection 10.3., could provide a basis for further research in

the automation of intelligence estimates.

44.
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SECTION 11

ASSESSING AND COMMUNICATING UNCERTAINTY

11.1. INTRODUCTION

In this section, computer-based methods for assessing and communicating

uncertainty in DE forecasts are provided. The general procedure is focused

on an intelligence databank called the "institutional memory" (IM). The IM

provides a facility for automated documentation of DE projections and is an

archive for past and current forecast descriptions. Individual estimators

provide inputs to selected IM entries and, for each recorded projection, docu-

ment important elements of the estimative process.

The IM is the core of a knowledge-intensive approach emphasizing storage

of estimators4 key insights and judgments. This differs from a data-intensive

procedure where the emphasis is on retaining pure statistical data. Stored

knowledge, in the IM, may include direct assessments of projection uncertainty

as well as general descriptive information. The direct uncertainty assess-

ments may be communicated through DE publications, such as the DIPP, or they

may be limited to use within DE. The general descriptive information stored

today may provide the basis for uncertainty assessments made tomorrow.

More specifically, the IM can be used to record the reason for numerical

estimates (stored in the DIPPOLS/TEAMS data base) or to document nonnumeric

(qualitative) projections. Qualitative projections, stored in the IM, can be

reviewed as part of a calibration process allowing trends toward over- or

1i-i
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junderconfidence to be located. Numeric projections can be calibrated using

TEAMS routines as well as the Calibration Assessment Package (CAP).

Two procedures, supporting the IM, have been programmed for use on DE's

Honeywell 6080 computer. One system, Subjective Probability Assessment (SPA)

system, aids estimators in estimating consistent judgmental probabilities.

The other system, Calibration Assessment Package (CAP), provides estimators

with an automated procedure for calibrating projection data. A user manual

is provided for each system.

In the remainder of this section, the following topics are covered:

1. a global examination of the IM and its integration into TEAMS,

2. the composition of IM entries (Section 11.3.),

3. a description of some of the analysis procedures supporting the IM

(Sections 11.4., 11.5., and 11.6.).

11.2. THE IM: A GLOBAL PERSPECTIVE

In this section, the IM is examined from a global perspective. Integra-

tion of the IM into existing DE systems and procedures is discussed.
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Integrating the IM into TEAMS

TEAMS provides a solid supporting base for the IM. As illustrated in

Figure li-i, the TEAMS design has been modified to incorporate the IM and some

additional output channels. The visible additions include:

1. The IM data base (file) consisting of documented judgments and

assessments with historical and current projections. The IM can

store permanent and working records (much the same as TEAMS) which

allows historical records to be preserved and current records to be

updated as the forecast is developed.

2. The report generator which formats IM information for various out-

put channels such as NIE and DIE reports as well as the DIPP.

In addition, changes have been made to existing DE modules such as:

1. The executive module, where the addition of file management and

data retrieval routines provides general control over stored

records. In addition, a text processing subsystem enables esti-

mators to enter textual information.

2. The statistics package which includes additions such as the SPA

system and CAP as well as several uncertainty statistics.

11-3
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1
IM Procedures

The IM provides estimators with a number of general procedures which are

quite similar to TEAMS operations. For example,

1. Maintenance of permanent (historical) and working (current) records.

Estimators can access permanent records to perform historical

analyses and working records to update documentation of current

projections. The process of "permanitizing" working records

(employed in TEAMS/DIPPOLS operations) could be expanded to include

IM working records.

2. Inputting data to the IM. Many IM inputs can be generated inde-

pendent of the IM and stored in the work area (WA). Refined data

could then be directed to the appropriate IM entry.

3. Retrieving IM entries. IM entries can be indexed according to pro-

jection keys (descriptors) much the same as in the TEAMS/DIPPOLS

data base. Therefore, IM records may be labelled according to

Country Code, Force, System, and Projection Year. As a result of

TEAMS, this retrieval mechanism is largely developed.

4. Using TEAMS statistics as basis for retrieval. TEAMS statistics

such as, ERROR,BIAS,UNCERTAINTY, and SCORE could be used to locate

anomalous projections. The reasons behind the numerical projections

could be retrieved from the IM.
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1
5. IM retrievals based on stored data. Estimators may identify docu-

mented information which correlates with specified levels of

accuracy in forecasts. This information could then be used as a

basis for retrieval. For example, all projections for Soviet ABM

systems which are based on the United States deploying a cruise

missile could be retrieved from the IM.

6. Generating reports. Specified elements of IM entries may be

specially formatted for output to DE products.

11.3. COMPOSITION OF IM ENTRIES

The general format of IM entries is presented in this section. Two

objectives of the format specifications are:

1. To provide a degree of structure in the framework of an entry. This

facilitates computer storage and retrieval operations. In addition,

it provides estimators with a file format decomposed into logically

consistent information blocks.

2. To provide a degree of flexibility in each information block. For

example, the format of information within a block is not critical.

Each block entry might be written like text in a report or an

entry in the DIPP.
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In Figure 11-2, the components or blocks of a typical IM entry are pre-

sented. Before discussing each block in detail, note that the block labels

and the block sequence correlate positively with the format in which projec-

tions are presented in the DIPP. To the left of each block, the block

number is printed, to aid this discussion. To the right of each block, tools

used to generate block information are listed.

11.3.1. Block 1 - File Identification Code

This block consists of a file code or index label which can be used to

identify and locate an IM entry. In the computer this code would be repre-

sented as a number, but logically, to the estimator, the index consists of

projection identification keys (possibly, Country Code, Force, System, and

Projection Year).

11.3.2. Block 2 - General Assumptions

The general assumptions provide a "baseline" for forecasts. They may

consist of elemental assumptions which are central to the validity of the

estimates. For example, it may be assumed that there will be no war in the

Middle East, NATO and other key alliances will not dissolve or substantially

lose their effectiveness, and the Space Treaty will be in effect. Historical

analyses of past projections would address the validity of the general assump-

tions and determine if those statements were in error.
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BLOCK NUMBER BLOCK DESCRIPTION IM TOOLS

1 File Identification Code

2 General Assumptions Text Editor

3 Specific Assumptions/Factors Text Editor

4 Script - Qualitative Forecast

o Most Likely Scenario Text Editor
(Detailed Description)

o Alternative Scenarios
(In Capsule Form)

5 Sensitivity Analysis

o Qualitative description of Text Editor
forecast sensitivity to
assumptions and factors

o Quantitative description of SPA
forecast sensitivity to as- Statistical
sumptions and factors (meas- Measures
ures of uncertainty, sensi-
tivity and robustness)

6 Historical Analysis Text Editor

o OB Data Uncertainty Measure OB Uncertainty Measure

o Calibration Assessment CAP

Figure 11-2 Information in IM Entries
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Inputting assumptions to Block 2 could be nearly automatic when the

TEAMS work area is used. For example, general assumptions can be named and

stored in the work area. If the assumptions need to be edited, appropriate

edit routines are called. If the assumptions are not edited they are simply

transferred into the appropriate IM entry.

11.3.3. Block 3 - Specific Assumptions/Factors

j Specific forecast assumptions are often more closely associated to one

or a group of related projections than to the full spectrum of forecasts.

They may not describe as far reaching events as the general assumptions, but

instead point to factors which are most likely to influence selected fore-

casts. For example, assume that the Soviets are emphasizng production of

air superiority fighter aircraft due to a perceived threat from the F-18.

This assumption has direct impact on the production and deployment of the

MiG-23, for example, and virtually no effect on production of the Mil Mi-8

(NATO "HIP") helicopter.

Essentially, then, the estimator documents assumptions, factors or

forecast variables that are likely to influence weapon production and deploy-

ment rates. All of these elements may have been linked into a unifying

scenario which describes various world event interactions. (This scenario
4.

will be discussed in Block 4.)
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11.3.4. Block 4 -'Script

The qualitative or nonnumeric forecast is documented in the script. This

forecast is often communicated as a scenario and reflects expected critical

events, anticipated adversary intentions, assumed political interactions,

etc. In fact, DE products, such as NIE's, often present assessments in the

form of scenarios. Scenarios may play a key role in communicating forecast

uncertainty and therefore, the purpose of the script is twofold:

1. Provides documentation for the anticipated or most likely scenario

2. Supplies a means of stating alternative scenarios.

The two areas of documentation are useful from several perspectives; for

example:

1. The most likely scenario is documented and therefore available for

review. This scenario is useful in conveying the reasoning behind

the numerical estimates.

2. The uncertainty associated with the most likely scenario is more

readily assessed when alternative scenarios are available for com-

parison.

Although the most likely scenario may be quite explicit (in terms of communi-

cating forecast factors) it may be difficult to assess the uncertainty
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associated with the single scenario. (This is partly true because scenarios

are often causally-related event sequences that are primarily composed of

statements of fact or, in certain instances, uncertain events that are treated

as facts. Scenarios are often not accommodating to statements of uncertainty.)

A useful procedure may be to specify alternative scenarios in the IM and

possibly in the DIPP and other DE products. A range of plausible outcomes,

conveyed through alternative scenarios, aids in communicating the uncertainty

associated with accepting the most likely scenario as well as numerical esti-

mates that may be based on it.

The primary purpose of the script, then, is to document the full range

of plausible events. In a qualitative sense, the degree of belief that the

estimator has in the numerical forecast can be assessed, because alternatives,

in a sense, convey uncertainty. Cf course, it is likely to be difficult, if

not impractical, to develop alternative scenarios with the level of detail

- found in the most likely scenario. The practical solution might be to pro-

vide alternative scenarios in capsule form, highlighting the primary factors

and assessed events. In Block 5, a procedure for quantifying the uncertainty

conveyed through alternative scenarios is given.

11.3.5. Block 5 - Sensitivity Analysis

Information stored in Block 5 is derived from sensitivity analyses.

Procedures for conducting sensitivity analyses are discussed; however, it

may be useful to first review the information content of Blocks 2 through 4.

Blocks 2 and 3 serve to decompose the forecast into key assumptions and
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factors. This procedure follows a decision-theoretic approach to decision

making in which a prime objective is documentation of the important decision

variables. In Block 4, a qualitative expression o. the forecast is presented

and generally unifies the information specified in Blocks 2 and 3. Although

the forecast has been stated at the global and atomic levels, statements as

to the uncertainty of the forecast have not been provided. This, then, is

the role of the sensitivity analysis Block and its supporting routines; that

is, to provide a range of procedures for assessing and communicating the un-

certainty of the forecast. The remainder of the discussion on Block 5 first

addresses the general procedure for conducting sensitivity analyses (defining

the terms sensitivity and robustness). Next, individual approaches to the

analysis are discussed and, following that, procedures for quantifying fore-

cast uncertainty and robustness are presented. The quantification techniques

are presented first conceptually and second through example. The last topic

is qualitative procedures for conducting sensitivity analyses.

General Procedure and Definitions

Consider a numerical projection supported by stated assumptions and a

descriptive scenario. If the numerical estimates are insensitive to devia-

tions to stated assumptions, the projection is said to be robust with respect

to those assumptions. If the projection is discounted should the assumptions

be in error, the projection is said to be sensitive to departures in the

stated assumptions. For example, assume that the production level for Soviet

SS-16's is not strongly tied to a SALT agreement (even though SALT constrains

the number of missiles that can be deployed.) Then, incorrect assumptions
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concerning the existence of SALT may not affect the accuracy of the SS-16

forecast. The SS-16 is said to be robust to the assumption that SALT will

exist. The approach to sensitivity analyses consists of identifying key

forecast factors and assumptions and determining their impact on projection

accuracy under changing world conditions. The following discussion addresses

approaches to measuring the sensitivity and robustness of projections as well

as the overall uncertainty.

Various Approaches to Sensitivity Analysis

There are many approaches that can be used in assessing the sensitivity

or robustness of projections as well as the uncertainty. One is what is

often called intuitive or holistic. In the holistic approach the estimator

assesses the uncertainty, for example, using intuition, experience, or

collective knowledge. Another approach may be termed rational or analytic.

In the rational approach, the assessment of uncertainty is determined after

having dissected the problem into its component features. In addition to the

two approaches, the sensitivity analysis may be conducted on two bases. One

basis is qualitative and the other is quantitative. Therefore, there are a

number of approaches that can be employed. Selected procedures supported by

the IM and affiliated routines are discussed next. The first approach is

quantitative and employs the SPA system; the second approach is qualitative.

1 -
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Quantifying Assessments of Uncertainty, Sensitivity and Robustness

Quantitative procedures for assessing forecast uncertainty, sensitivity

and robustness are discussed first, in general, and then through example. The

approach is holistic and focuses, first, on the script (Block 4). Assume that

the most likely scenario is stated along with a number of alternative scenar-

ios. To assist the estimator in conveying his degree of belief for each of

the scenarios, a rank ordering of scenarios, based on their likelihood of

occurrence, would be useful. As a first step, the ranking could be entirely

qualitative such that the estimator would simply order the scenarios in

descending fashion to convey the assessed decrease in the probability of

occurrence. However, it is often not sufficient or even practical to simply

order the alternatives based on their likelihood. In fact, significant infor-

mation is often lost when only the ranks are supplied. For example, if along.

with the most likely scenario, call it A, three alternative scenarios are

specified (B, C and D), it may be that a rank ordering would be: A, C, D, B.

However, there is not any information supplied in the ranks alone which allows

the degree to which one scenario is more likely than another to be inferred.

The ranking procedure, then, is suggested as a first step in structuring

the probability assessment. To supplement the rank order procedure, a number

of numerical assessment techniques are available for assigning probabilities

to scenarios. For example:

1. Category methods which involve classifying the probaility associ-

ated with a scenario into a fixed number of discrete categories.

11-14
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2. Direct methods which involve the direct assessment of the proba-

bilities. The estimator may be required to assign a probability

to a scenario based on some internal assessment procedure (which

often results in inconsistencies in the assessments).

3. Gamble methods which involve structuring wagers and then varying

probabilities until the estimator is indifferent to the bets. The

resulting probabilities reflect the estimator's beliefs.

The suggested approach to assigning probabilities is derived from a

scaling procedure [Saaty], and is a variation of the direct estimation tech-

nique. The procedure employs compared probabilities or likelihood ratios.

(As will be discussed later, this procedure is general in that the ratios

can also be in units of value, sensitivity, importance or virtually any other

comparison scale.) A compared probability, for example, consists of the ratio

of the probability of one scenario to that of another. To illustrate, assume

that an estimator has defined four scenarios as being plausible and that it is

desirable to order or scale them as to their likelihood of occurrence. The

estimator performs a pairwise comparison among the four scenarios. For

example, the likelihood of scenario A compared to scenario B, LAB, is by

definition a ratio of their respective probabilities. However, the scaling

method requires only that the ratios be assessed. The ratios of paired com-

parisons are stored in matrix form and solution of the subsequent eigenvalue

problem results in the underlying probability assessments. (Note that a

further description of the mathematical procedures involved in this method is

provided in Section 11.4.)
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The problem of extracting subjective or estimated probabilities from de-

cision makers is difficult. Although the decision maker may determine which

scenarios are more likely, it is difficult to quantify intuition. When the

number of scenarios gets large, the difficulty of the problem increases. How-

ever, it is generally easier for the decision maker to compare the scenarios

two at a time. The proposed scaling method is based on pairwise comparisons.

The important feature of this method is that it allows estimators to measure

the consistency of their assessments. The Subjective Probability Assessment

(SPA) system, developed under this contract, can be used by estimators to

estimate probabilities. It utilizes measures of consistency to direct the

estimator to intuitively satisfying and mathematically consistent subjective

probabilities.

The scaling method is illustrated. Assume that the basic task of an

estimator is to predict the number of MiG-23's that the Soviet Union will

deploy in the next 11 years. The estimator has developed a range of scenarios

which capture the more plausible event sequences. (For this discussion, the

scenarios are simplified.)

Scenario A: The MiG-23 will continue in its role as a fighter/inter-

ceptor aircraft. However, it is anticipated that the Soviets will take

steps to counter the strike capability of the United States' cruise

missile. The Soviets will likely develop a look-down radar capability

for the MiG- ;3. This enhancement will give the MiG-23 the capability of

detecting and destroying the cruise missile in limited weather conditions

and terrains. MiG-23 development will increase significantly to satisfy

this added role.

1 1-1 6

.1* . ... ii . .. .



Scenario B: The Soviets will not modify the MiG-23 with look-down radar

but instead will continue to utilize it in its current role. Instead,

to cope with the cruise missile threat, ground-based radar and missile

systems will be enhanced. Possibly the SA-9 (GASKIN) missile will be

employed. Production of the MiG-23, under this scenario, is not af-

fected by deployment of the cruise missile.

Scenario C: The Soviets will deemphasize the role of the MiG-23 as an

interceptor aircraft and instead increase production of replacement air-

craft, the MiG-27. The shift in emphasis will be slow, probably occur-

ring over 3 or 4 years, the time necessary to develop production capa-

bilities for the MiG-27.

Therefore, the stated scenarios consist of the most likely (scenario A), and

the alternatives (B and C). These scenarios are documented in Block 4 of the

IM while the underlying assumptions for scenario A are stored in Blocks 2 and

3.

The next step in the assessment is to perform a pairwise comparison

among the three scenarios. In support of this, an assessment scale [Saaty]

is used. (Note that use of this scale or any arbitrary yardstick is not

crucial to the general technique, although it does encourage a consistent

approach to its use. SPA allows the user to employ a stored scale or define

another with only minor constraint on that definition.) Using the scale

given in Figure 11-3, the following pairwise comparisons were performed and

stored in matrix form as illustrated in Figure 11-4.
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The Scale and Its Description

Intensity of
Importance Definition Explanation

I Equal Importance Two activities contribute
equally to the objective

3 Weak importance of one Experience and judgment
over another slightly favor one activity

over another

5 Essential or strong Experience and judgment
importance strongly favor one activity

over another

7 Demonstrated importance An activity is strongly
favored and its dominance
is demonstrated in practice.

9 Absolute importance The evidence favoring one

activity over another is of

the highest possible order of
affirmation

2,4,6,8 Intermediate values between When compromise is needed
the two adjacent judgments

Reciprocals of If activity i has one of the
above nonzero above nonzero numbers

assigned to it when compared
with activity j, then j has the
reciprocal value when compared
with i

Rationals Ratios arising from the If consistency were to be
scale forced by obtaining n

numerical values to
span the matrix

Figure 11-3 Assessment Scale

fl-,i
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A B C

A 16 I

B 1/6 1 1/2

C 1/'4 2 1

Figure 11-4 Comparison Matrix
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o Scenario A is strongly favored over B with intensity 6.

o Scenario A is slightly favored over C with intensity 4.

o Scenario C is weakly favored over B with intensity 2.

(Note even though the scale implies that it is discrete, it is acceptable to

define it as continuous such that intensities such as 2.5 are permissible.)

Therefore,

LAB = the likelihood of A over B = 6

LAC = the likelihood of A over C = 4

LBC = the likelihood of B over C = 2

and by definition,

L = l/LAB = 1/6, etc.,

and,

LAA L BB L CC 1.

Solution of the eigenvalue problem using the data in Figure 11-4 results

in the following probabilities:

Probability of scenario A = .70

Probability of scenario B = .1

Probability of scenario C = .19

11-20
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A consistency measure, , is computed and tested against a decision parameter,

d. If p is less than d, reasonable consistency is attained and the estimator

may not wish to revise the original pairwise comparisons. In this case, the

estimator is assumed satisfied with the results. (The reader may wish to

consult the SPA user manual for a discussion of how consistent pairwise

comparisons are attained.) Finally, the resulting probabilities can be

graphically displayed as shown in Figure 11-5.

Using the generated probability for each scenario an uncertainty statis-

tic may be defined and computed:

Uncertainty = U = 1- ax

where P is the probability associated with the most likely scenario, A.max

U, then, is an estimate of the uncertainty associated with accepting the most

likely scenario, A. For example, if an intelligence consumer was to employ

the expected scenario with associated numerical estimates in a war-gaming

exercise, the measure, U, would give insight into the risk associated with

basing decisions and actions only on the most likely scenario. For the pre-

vious example, concerned with estimates of MiG-23 production, the probability

.associated with the expected scenario is estimated to be .70. Therefore, the

computed uncertainty associated with the most likely scenario is

U 1-.70 z .30 .11 + .19

11-21



Ii

Probability

of Occurrence

00
A

SCENARIOS B C

Figure 11-5 Assessed Probability of Occurrence

11-22



Uncertainty estimates can be computed in a like fashion for various weapon

systems resulting in a straightforward procedure for assessing the relative

degree of confidence that estimators have in a collection of projections. As

illustrated in Figure 11-6, the uncertainty estimate for each weapon system

in a group can be depicted graphically allowing recognition of particularly

uncertain projections.

The assessed subjective probabilities for each scenario can be used as a

base for the sensitivity analysis. In the procedure, the probabilities will

be coupled with directly assessed measurements of sensitivity to generate a

robustness measure. This quantitative measure of robustness can be used in

conjunction with a qualitative assessment to provide a more complete appraisal

of the overall confidence that the estimator has in a projection.

In computing a measure of robustness, a subjective measure of sensitivity

for each alternative scenario is assessed by the estimator. This sensitivity

measure, S, is defined to take on values between 0 and 1. The more sensitive

a forecast is, with respect to a particular set of assumptions, the closer

the value of S is to 1. As assessment that a forecast is insensitive would

result in a sensitivity coefficient close to 0. Using sensitivity coeffi-

cients and probabilities assigned to alternative scenarios, an overall

robustness measure, R, can be computed. The procedure for computing R will

be described using an example. Referring to the previous example, a rank

ordering and scaling of the scenarios, as to their likelihood, resulted in

the following probabilities:
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Figure 11-6 Assessed Uncertainty for a Group of Weapon Systems
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o Probability of scenario A = .70 ....... the most likely scenario

o Probability of scenario B = .11 ....... the least likely alternative

o Probability of scenario C = .19 ....... the most likely alternative.

Assume that the following sensitivity coefficients for each of the alternative

scenarios were determined:

o Sensitivity of the numerical estimates should B occur = .8

0 Sensitivity of the numerical estimates should C occur = .3

Note that the estimator has reflected the following in his quantitative

assessment of uncertainty and sensitivity:

Scenario A has a high likelihood of occurrence, .70. However, if A

does not occur, scenario C is the next most likely; in fact, C is ap-

proximately 2 times as likely as the other alternative, B. Although

scenario C is quite plausible, its realization would not seriously

affect the validity or utility of the numerical estimates. Scenario B,

should it occur, would essentially invalidate the numbers provided;

however, its likelihood is quite small.

The measure of robustness aggregates the uncertainty and sensitivity assess-

ments in the following way:

n-i S.P. n-i S.P.
R1- 1  (nin ii --T i

1 i1 (1)
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where n = the number of scenarios. Therefore, n-i is the number of al-

ternative scenarios.

S. the sensitivity coefficient for each of the n-i alternatives1

for i=l to n-l.

P. the probability of each alternative scenario for i=l to n-l.1

Note that in equation 1, the term in the denominator, (n-l)/n, is a normaliz-

ing factor which restricts R to the interval between 0 and 1. For the

example cited, the following is computed:

R = 1 - 3 (.8(.11) + .3(l.19))/2 = .78 (rounded)

Therefore, the projection is assessed to be relatively robust, since the

closer the value of R is to 1, the more robust the projection is assessed

to be. The robustness measure, in addition to the uncertainty measure,

provides another means for comparing a collection of projections. For

example, as shown in Figure 11-7, robustness is plotted for a group of related

weapon systems.

Given two measures of the quality of a projection, a scatter diagram

could be generated for a group of related weapon systems. For example, in

Figure 11-8, the scatter diagram aids in identifying those projections which

are particularly uncertain or lacking in robustness or both. In the sample

plot, the projection for the SS-18 is determined to be both significantly un-

certain and sensitive to deviations from assumptions.
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Figure 11-7 Comparing Robustness Measurements for a Group

of Soviet Fighter/Interceptor Aircraft.
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ASSESSED CRITICAL REGION
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UNCERTAINTY -------.50

SS-19
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SS-17
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Figure 11-8 COMPARISON OF UNCERTAINTY AND ROBUSTNESS

ASSESSMENTS FOR SELECTED SURFACE-SURFACE

MISSILES.

*Projections falling in this region are determined to be particu>..'

risky. A high degree of uncertainty coupled with a significant

sensitivity to deviations from assumptions makes these projectio.s

questionable in terms of validity.
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Thus, the robustness statistic, in a sense, summarizes the findings of

the sensitivity analysis by providing an indicator of the reliability of the

projection. It takes into account not only probability but the likely effect

should alternative events occur. Some brief statements follow, concerning

a qualitative approach to the sensitivity analysis.

Qualitative Assessments of Uncertainty, Sensitivity and Robustness

The approach to a qualitative sensitivity analysis can be rational or

holistic. The holistic approach might consist of an overall appraisal of the

uncertainty associated with a projection, pointing to various elements of the

scenario which might be contributory. The analyst would most likely give

a global view of the sensitivity or conversely the robustness of the projec-

tion under varying "world views". Another approach would be to dissect the

qualitative expression of the forecast, assessing the contribution of each key

assumption and factor to the overall uncertainty. This rational approach

might involve a listing of the key projection factors accompanied by a

qualitative assessment of their individual.importance to the forecast. The

following table is suggestive of the rational approach:

FACTOR PARAMETER FORECAST SENSITIVITY

production rates Manpower LO
for MiG-23 factories Raw Materials LO

Time after initial
production MED

Performance/Modifications Aerodynamic LO
for the aircraft Avionics HI
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In this table key factors and associated parameters have been identified.

The sensitivity of the forecast with respect to the stated parameters is

given in the right hand column.

11.3.6. Block 6 - Historical Analysis

This Block is used to document the results of pertinent historical data

analyses. The analysis results may have been significant inputs into the

current projection and for that reason are given special consideration. Two

historical data assessment procedures are proposed. The first is discussed

in Section 11.5 and focuses on the accuracy of past OB data. Its primary

purpose is to detect trends toward improvement or deterioration in the OB

update sequence; in other words to determine if the accuracy of the OB

varies significantly over time. The second procedure is employed in calibra-

tion assessments. The calibration assessment detects trends toward over- or

underconfidence in past estimates. The Calibration Assessment Package (CAP)

is provided as separate programmed package under this contract. It provides

a statistically-based calibration procedure and is supported by tabular and

graphic output.

11.4. THE MATHEMATICAL BASIS FOR ELICITING SUBJECTIVE PROBABILITIES

The Subjective Probability Assessment (SPA) system elicits comparison

ratios from decision makers for defined items. The comparisons may consist of

probability ratios, ratios of values, etc. For the purpose of this discussion,
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we will mostly consider comdared probabilities. From the compared proba-

bilities, or ratios, the desired probabilities are obtained using a scaling

procedure [Saaty]. The scaling procedure is outlined as follows.

Assume that the following set of item.. are of concern to the decision

maker:

AIA....... ,A and it is desirable to determine the set of

probabilities

PIP 2. . .. .... ,P associated with each item. (The items may be

events or scenarios.)

It may be difficult to obtain the P.'s directly, however, it may be much1

easier for the decision maker to compare two items at a time, that is, deter-

mine the probability ratios. Consider the matrix of compared probabilities,

M, where,

1 1 1 2 P1/P3.............1 nP/

P/P" P/ P/P P /P
M P/Pl P/P2 P/P P2/P n

Pn/Pl n~o Pn/P3-........... Pn/ n

L-

11-31

S.



and where, Mi. = Pi/P. , Mj l/Mij, and Mi 1

Saaty has shown that M is a matrix of rank 1, and it has n-l eigenvalues

which are zero and one that is n, if the P.'s are known exactly. Thus all the-- 1

ratios, or elements of the matrix, are consistently defined. If the P.'s are

not known, as is the case we are concerned with, the maximum eigenvalue will

differ from n, and the remaining n-l eigenvalues will differ from zero. Saaty

has shown that the degree that the maximum eigenvalue deviates from n is

proportional to the degree that the matrix of comparisons in inconsistent. By

inconsistent, it is meant that the pairings do not obey a transitive rule.

The eigenvector associated with the maximum eigenvalue is the vector of

desired probabilities. If the matrix is relatively consistent, then the

probabilities should reflect the underlying belief system of the decision

maker. If the matrix is inconsistent, then, the estimator may wish to alter

the original paired comparisons. SPA provides a procedure for entering the

paired comparisons, determining the resultant probabilities and checking for

consistency. The consistency measure used in SPA differs from Saaty's; there-

fore it deserves mention.

Following the method of Saaty, the deviation between the maximum

eigenvalue and n, the order of the matrix, can be used to determine if the

matrix is consistent. An experiment, involving Monte Carlo testing, was

conducted to determine how useful statistics based on the maximum eigenvalue

would be in determining inconsistency. For various values of n, large

numbers of random matrices were generated. For each, the statistic
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(max - n) / n was computed. The resulting empirical distributions, for

given n, were tabulated and the 1,5 and 10 percent fractiles were determined.

It was found that small values for 1, occurring approximately 1 percent of the

time, were in fact indicative of matrices that were on the aggregate con-

sistent. Note the term "aggregate". Since P.'s are not known exactly, the

resulting eigenvector can be considered to be the "true" or ideal eigenvector

plus some perturbation. The perturbation results in localized errors in the

elements of the eigenvector. It is difficult to assess the amount of error

incurred on each eigenvector element. The statistic, p , is an aggregate

measure of inconsistency because it is sensitive to the summed error over

the entire eigenvector. Therefore, the experimentation suggested that large

local errors or inconsistencies could exist and still result in acceptable

aggregate errors.

In SPA, a different approach to consistency was taken. An absolute error

measure was calculated on a local basis; i.e. it sensed inconsistencies in

each paired comparison. Using this, absolute error measurements on a local

basis and variance measures at the aggregate level allowed SPA to oresent a

total picture of the inconsistencies. Once the paired compariso are

judged consistent, the resulting eigenvector is scaled to provide the

desired probabilities.

11.5. ANALYSIS OF HISTORICAL PROJECTION DATA

In this section, procedures are provided for analyzing historical

projection data. One approach involves computing uncertainty measure for OB
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data. This uncertainty measure is used to determine the overall reliability

of past OB data for a particular system. The level of uncertainty in past

OB data can be used as a basis for judging the accuracy of current OB data.

A quantitative calibration procedure provides another approach to analyzing

past projection data. This statistically-based calibration procedure com-

plements the qualitatively-based approach available through the Institutional

Memory (IM).

11.5.1. Uncertainty in Order-of-Battle (OB) Data

In this subsection, a technique for measuring uncertainty in OB data is

presented. In this measure, uncertainty is attributed to variability

(fluctuation) in the history of OB revisions. To begin, a description of the

OB update process is presented. Next, the uncertainty measure is defined.

This measure provides estimates of component uncertainties (yearly snapshots)

and a basis for computing aggregate uncertainty (the overall assessment

through time.) Finally, an example is provided.

The OB update procedure is defined. OB data are typically used as a

basis for estimation. The OB may represent the best knowledge currently

available on the trends in weapon system deployment over previous years. The

OB is an estimate which may be revised as more information becomes available.

Therefore, each year, for a period of four years, the OB for a given projec-

tion is updated. For the year 1972, one would expect four OB values to be

available: the original given in 1973, and the updated values received in

1974 through 1976. The latest update, in 1976, is generally assumed to be the



most accurate estimate of weapon system levels in 1972. Variations or fluctu-

ations in the OB over the four year period are a source of uncertainty when-

ever the OB is used as a basis for projections. Therefore, the reliability

of the current OB, given the OB history, is an important consideration for

analysts.

Graphically, updating OB values and computing component uncertainty

estimates can be illustrated as shown in Figure 11-9. Note that to the right

of each OB graph is an uncertainty measure, U, and each value of U is a com-

ponent of the aggregate uncertainty, AU. The uncertainty measure, U, for

each OB year can be defined as:

U.= OB(N) -B(I)jOBmax] izl N 1ma

where

U. the uncertainty associated with jth OB year
J

N = the number of times the OB year is updated, generally 4.

OB(I) = the weapon system level for the Ith OB year.

OBmax = the maximum OB value over the N year period.

The aggregate uncertainty, AU, can be defined as:

NY
AU E W.U.

j=l

where
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iI

W the weight given to the uncertainty of the jth OB year.

U. = the uncertainty assessed for the j th OB year.

I iNY = the number of OB years of histor-y.

The following example illustrates the computation of the OB uncertainty

measures U and AU. Assume that the OB history provided in Table 11-1 is

stored in the historical data base. From examination of the component un-

certainties in Table 11-2, it is evident that the OB values have not exhibited

severe variation and that the uncertainty decreased through time. For

example, in 1969 the uncertainty was assessed as .29 and the decreasing trend

led to a value of .11 in 1978. The aggregate uncertainty, AU, can be com-

puted using a weighting function, W. The estimator can determine whether un-

certainties from the more recent past are more important than those further

back in time. If they are, a weighting procedure other than uniform can be

employed. As shown in Table 11-2, two weighting functions wer3 used. Using

the uniform weighting function, the aggregate uncertainty is computed to be

.22, while the linear increasing weighting results in an aggregate of .17.

In both cases the aggregate uncertainty is probably reasonable.

The linear weighting resulted in an aggregate uncertainty lower than

that with the uniform weighting. This result reflects the fact that, in this

hypothetical example, the OB variability was greater in the early 1970's than

it was more recently. The uniform weighting emphasized early variability

more than the linear weighting did, and the aggregate uncertainty was cor-

respondingly higher.
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PROJECTION

YEAR

YEAR OB YEARS AND HISTORIES

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978

1970 10
1971 10 10
1972 12 12 14
1973 14 14 16 16
1974 18 18 18 20
1975 22 22 24 26
1976 28 28 30 30
1977 32 34 36 38
1978 36 38 40 40
1979 38 44 46 50

Table 11-1 Hypothetical OB History For Soviet Non-Nuclear Icebreakers
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OB YEAR COMPONENT UNCERTAINTY UNIFORM~ WT. LINEAR

1969 .29 19 1/45
1970 .33 119 2/45
1371 .27 1,'9 3/45
1972 .33 1/9 4/45
1973 .25 1/9 5/45
1974 .17 1/9 6/45
1975 .09 1/9 74

* Insufficient data

Table 11-2 Computation of CompQnent Uncertainties
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Uncertainty measurements computed on OB data may be quite useful in

Jquantifying the inherent variability of that data. These uncertainty measure-

ments may be used to communicate, within DE, the reliability of base rate

data. If past projections are in serious error, for example, it may be of

interest to conduct an analysis of the OB data to determine if OB variability

or error was a significant factor in forecast degradation.

11.5.2. Calibration Procedures

In general, there is a basic procedure for processing probabilistic in-

formation; it involves refining, updating, calibrating and aggregating assess-

ments. Therefore, judgmental probabilities often can be modified by analysts,

updated with new information, and rectified by calibration. In this section,

the role that calibration plays in probability-based assessments is discussed.

It is shown that the prediction and calibration processes can be statistically

modelled and that this formal approach results in precise assessments. More

explicitly, the following will be discussed:

1. A definition of calibration that is useful to DE

2. The need and basis for a statistical model of the projection/

calibration process

3. Some proposed calibration measures

4. The calibration procedure.
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11.5.3. Definition of Calibration

Calibration assessments are used to determine the degree that stated

probabilities agree with baseline or truth frequencies. Thus, the weather

forecaster that assesses the probability of rain for April, in Washington, DC,

to be 20 percent is well-calibrated if it rains approximately 20 percent of

those days. If the forecaster is miscalibrated, calibration procedures can be

used as a basis for removing systematic biases from uncertainty statements in

forecasts. Then, if the forecaster was consistently high in assessing the

likelihood of rain, this overstatement might be used to calibrate future

forecasts.

Calibration procedures can be applied to DE projection data. Many pro-

jections consist of High, Low, and Best estimates of force levels. The High

and Low define a confidence interval for the Best. A probability, p, or

confidence coefficient is attached to the interval and states the likelihood

that the true force level (OB) is contained within it. If a relatively large

number of confidence intervals (High-Low's) and OB (actual) values were col-

lected, the expectation would be that 100p percent of the OB's would be con-

tained within the corresponding interval estimates. Therefore, if p equals

.75, 100(.75) or 75 percent of the OB's would have been captured by respective

High-Low intervals. Generally, 75 percent of the OB's will not be captured;

the actual percentage (hit rate multiplied by 100) may be substantially

higher or lower. A calibration assessment provides a procedure for testing

whether deviations between 75 percent and the hit rate are significant.

Given this definition of calibration, it is pertinent to discuss the need and

basis for a statistical model of the calibration process.
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11.5.4. A Statistical Model of Calibration

At this point in the discussion, a statistical approach to calibration

assessments is described. The procedure involves stochastic modeling of the

prediction/calibration cycle. This modeling yields probabilistic statements

concerning the significance of deviations between the hit rate and p (.75).

It is shown that the process in which the OB is compared to the High-Low range
is analogous to flipping a biased coin (where the probability of a head is

.75) and recording the number of heads. The analogy is reasonable because of

the following:

0 The process in which the OB is compared to the High-Low range has an

uncertain outcome. The OB may fall within the interval, a hit, or

it may not, a miss. The likelihood or certainty of a hit is .75.

Flipping a coin also results in an uncertain outcome. The coin

flip may result in a head (hit) or a tail (miss). The coin may be

biased such that the probability of a head is .75.

o If each of the two processes is performed a number of times, the

output from each will be the proportion of hits or hit rate. The

coin tossing analogy and accompanying statistical model are often

used to characterize processes where two outcomes are possible (a

hit or miss).

Assume that 20 projections were assessed and the biased coin was flipped

20 times. In both cases the proportion of hits (hit rate) is .60 compared to
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the desirable proportion .75. Are the projections well-calibrated? Is.the

coin consistent with the stated bias? The questions are equivalent and can

be answered when considering the common probabilistic nature of each process.

Calibration procedures can result in summary statistics such as the hit

rate or proportion of hits. Methods for treating proportions are now dis-

cussed. The treatment involves an important statistical distribution (the

binomial) which, under certain assumptions, describes the way in which pro-

portions vary. Knowledge of how proportions vary provides a basis for de-

ciding whether projections might be miscalibrated. More explicitly, the

binomial model provides the following information:

1. That calibration procedures based only on the hit rate are very

likely to be misleading or at least incomplete. This is especially

true when the number of projections is small.

2. That the hit rate and its confidence interval provide a more

realistic basis for calibration. Miscalibration can be determined

with known decision risk.

3. That the risk associated with deciding projections are calibrated

is complex. This decision has uncertainty inversely proportional

to the number of projections (amount of data).

The statistical model will be discussed using two approaches. The first

will examine the binomial from an intuitive or informal perspective. The
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discussion primarily employs logical examples instead of mathematical con-

cepts in describing the model. The second approach is slightly more formal

and uses explicit mathematical terminology in describing the binomial model.

The approaches are identical in the sense that both describe the application

of the binomial model to the calibration process. The major difference in

the approaches is stylistic.

Intuitive Discussion of Calibration

A model of the calibration process is presented on intuitive grounds. It

is shown that although the hit rate is a useful calibration measure, it is not

sensitive to the inherent variability in analyst performance (as a probability

assessor). Confidence intervals are useful in accounting for performance

variability; therefore, calibration assessments are based on both the hit rate

and its confidence interval. The hit rate and the confidence interval are

used to determine whether projection data are calibrated or miscalibrated and

to identify the risk or uncertainty associated with that decision.

The variability in the calibration process is discussed. Assume that a

question and answer (Q/A) system is available to DE as a training tool.

Estimators are required to answer a series of almanac-type questions. For

each question, two answers are provided, one of which is correct. The analyst

(estimator) is required to choose the correct answer as well as to assess the

confidence he has in his choice. This confidence is expressed as a proba-

bility (that his answer is correct). For example, if an analyst was asked

"Are potatoes indigenous to Ireland or Peru?" he might pick Peru (the correct
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answer) and state a confidence of .7 in his answer. Over a large number of

-questions, responses are categorized according to the assessed probabilities

such that all questions which have probability p attached to them are grouped

together. Ideally, then, the hit rate for each group should be close to its

assessed probability. Thus in the above example, all questions that had

attached probabilities of .7 are grouped together, and, ideally, 70 percent

of those quebtions are answered correctly.

The Q/A session is examined further. In particular, focus on the cate-

gory p equal to .5. Assume that the estimator has answered 10 questions. If

the estimator is well-calibrated with p = .5, how many questions would one

expect to be answered correctly? This question is the same as asking: if a

fair coin was tossed 10 times, how many heads would one expect to occur?

Since the probability of a head is .5, the number of flips resulting in a head

is expected to he 5 (i.e., the proportion of heads is expected to be .5).

However, from experience, it would not be too shocking if 3, 4, ", or even 7

heads resulted, even though the coin is fair. Similarly, for the Q/A system,

given that p = .5, it is quite possible that the well-calibrated estimator

would get 3, 4, 6, or 7 questions correct. Large deviations from the expected

result are quite possible, especially when the number of questions is small.

In light of the coin-tossing example alone, it is easy to be suspicious of

the accuracy of calibration analyses based on hit rates computed over limited

data.

Just how much the hit rate can vary for a well-calibrated estimator is

now discussed; in doing so it is useful to define a confidence interval.
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Confidence intervals generally define a range of plausible values; the range

is usually centered about the expected value or mean. Confidence intervals

based on two different values will be used in the following discussion; they

are:

Cl: A range of values that with some probability captures the true but

unknown parameter value of interest.

C2: A range of values that captures some percentage of the possible

values given that true parameter value is known.

For example, confidence interval Cl would result in the following type of

statement: there is a 95 percent chance that the true unknown value of the

range of the SX-19 missile lies between 6000 and 6500 miles. The basis for

this statement might have been a number of observations made of actual SX-19

launchings. Suppose that it is known with confidence that the average range

of the SX-19 is 6200 miles. Then a C2-type confidence interval could provide

an interval estimate of the likely distance any SX-19 will travel. As an

example, a launched SX-19 will, with 95 percent confidence, travel between

6G00 and 6500 miles, with an expected range of 6200 miles. Both Cl and C2

confidence intervals will be used. C2 will be used to illustrate the amount

of performance variability expected from the well-calibrated estimator; it

will also be used to discuss the likelihood that miscallbrated estimators can

perform like calibrated estimators, especially when data are limited. Mis-

calibrated and calibrated estimators may be difficult to identify over

limited data just as it may be hard to separate the biased coin from the
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fair coin. Cl confidence intervals are more useful in computing performance

estimates; they are used in the proposed calibration procedure discussed later

in this section. It should be noted, however, that the two perform identi-

cally, in that the same decisions can be made with the same accuracy. The

difference lies in the way calibration assessments would be conveyed.

The confidence interval, C2, provides a convenient tool for conveying

the performance variability of the well-calibrated estimator. For the Q/A

system if an estimator is calibrated for some p, say p = .7, then the 95

percent confidence interval is a range of values encompassing the "true"

value, .7, such that the probability is .95 that the session hit rate will

fall within the specified interval. Obviously, then, there is only a 5 per-

cent chance that a hit rate from the calibrated estimator will fall outside

this interval. There are two critical decisions to be made; they are that

the estimator is:

1. Miscalibrated - If the hit rate falls outside the confidence inter-

val, there is a 5 percent risk associated with de-

ciding that the estimator is miscalibrated.

2. Calibrated - If the hit rate falls within the confidence inter-

val, it is reasonable to state that the estimator

is consistent with calibrated results but it cannot

be necessarily stated that he is calibrated.
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To illustrate the reasoning behind decision 1, miscalibrated, Figure

11-10 provides confidence intervals for p = .5 through 1.0, in increments of

.1. The number of samples, N, is 8. The diagonal line is the calibration

line and represents the desired result. For each assessed probability there

is specified a range of hit rates or confidence intervals. If the hit rate

falls inside the designated range, the assumption that the estimator is cali-

brated with a particular value, p, cannot be rejected. Note that for N = 8

and each p there is a wide range of acceptable hit rates. For example, for

p = .7, the hit rate can range from .5 to 1.00; any value within this range

is consistent with the assumption that the estimator is well-calibrated.

Similarly, consider when p = .5. For 8 questions asked, the results can be

considered consistent with the assumption that p = .5 if the hit rate is

between .25 and .875, or if between 2 and 7 correct responses are recorded.

The first conclusion to be drawn is that for small N, it is very difficult

to reject, with small error, the possibility that the estimator is calibrated.

For decision 2, calibrated, the concern is whether or not the estimator

is actually calibrated. If the hit rate falls within the prescribed con-

fidence interval, the decision is not to reject the assumption that the

estimator is consistent or calibrated. However, it may be that the estimator

is not calibrated to the assessed probability but is in fact consistent with

another. Reconsider the coin tossing example previously mentioned. It was

claimed that even if the coin is fair, it would not be unusual for the pro-

portion of heads to differ from the expected proportion, .5. Therefore, if

the coin was flipped 8 times and 3 heads resulted, the original assumption

that the coin was fair would not be rejected. However, it may be that the
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coin is biased, such that the probability of a head is .4. Flippipg the

biased coin 8 times may frequently result in a proportion of heads that would

be identical to the proportion resulting from flipping the fair coin. Simi-

larly, Xhe estimator may be miscalibrated to some degree and still produce a

hit rate that is acceptable. If the probability of incorrectly judging an

estimator miscalibrated is fixed (say 5 percent), the ability of the test to

distinguish those that are miscalibrated from those that are wellcalibrated

is dependent on N, the number of responses. The smaller N is the greater the

possibility that the estimator will be considered well-calibrated when he is

not. Therefore, a prime concern is that N be large.

In Table 11-3, the effect that increasing N has on the ability to dis-

tinguish those estimators that are miscalibrated from those that are cali-

brated as illustrated. For example, assume that the value of p is .7; that

is, the estimator has assigned a probability of .7 to a number of responses.

If the estimator is consistent with p, there is approximately a 90 percent

chance that he will be judged so. However, assume that he is actually in-

ternally consistent with another probability, say .6. Then, for N = 8, there

is an 81 percent chance that he would be consistent with p = .7. In other

words, he will "look" consistent with p = .7. As N increases, however, the

chances that he would be confused with being consistent with .7 decrease to

.71 for N = 16 and to .6 for N = 32. Someone consistent with p = .2, would

have little chance of being considered calibrated with p z .7, even when

*., N = 8 (the probability is only .06). The general observation from Table 11-3

is that as N increases the ability to discriminate the miscalibrated from the

calibrated increases. (In practice, the confidence in this discrimination
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ASSESSED PROBABILITY N=8 N=16 N=32

0.0 0.00 0.00 0.00

.1 .01 0.00 0.00

.2 .06 0.00 0.00

.3 .19 .02 0.00

.4.41 .14 .02

.5 .63 .40 .19

.6 .81 .71 .60

Stated Probability .7 .89 .90 .88

.8 .82 .85 .64

.9 .57 .49 .09

1.0 0.00 0.00 0.00

Table 11-3 Probability of Being Labelled Calibrated with P=.7

Given true ,calibration to the "Assessed Probability"
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would never be 100 percent, but "small" levels of miscalibration would be

tolerable. For example, if it were desirable to calibrated to p = .7, mis-

calibration to neighboring values of p, such as .6 and .8 might very well

be acceptable. From Table 11-3, it might be concluded that for N = 32 the

two decisions, calibration and miscalibration, can be identified with con-

fidence if calibration includes a range of p, .6 to .8, centered about the

desirable value, .7.)

The above intuitive discussion of calibration is possible because of the

statistical model it is based on (the binomial). Characterization of the

calibration process makes clear the inherent variability and allows appropri-

ate performance statistics to be developed.

A Mathematical Description of the Calibration Model

A mathematically oriented description of the statistically-based cali-

bration model is given. The goal of this discussion is not mathematical

rigor, but instead to provide a more explicit description of the statistical

model. The treatment begins with a description of the binomial or calibration

model. Given this model, the inherent variability associated with calibration

data can be examined. Of special interest is the topic of Type I and Type II

errors, which define the probability of incorrectly deciding estimators are

miscalibrated and calibrated, respectively. Finally, the method of computing

confidence intervals for the hit rate is presented. This estimation procedure

is the basis for the calibration assessments described in Section 11.5.6.
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The following data are considered:

1. The High-Low range (the DE projection confidence interval)

2. The associated Order-of-Battle (OB) data (the best estimate of the

actual force level for past years).

Assume that there are N data items or trials, where each trial consists of the

comparison of the OB to the High-Low range. There are two possible outcomes

from each trial:

1. A hit - the OB value falls within the High-Low range

2. A miss - the OB falls outside the High-Low range.

Further, the assumption is made that the N trials are independent of each

other; that is, that the probability of a hit is the same for each trial.

This assumption is consistent with DE's assignment of a 75 percent confidence

level to each High-Low estimate.

Consider one of the N trials. The outcome of the trial is coded as

follows:

x = 1 when a hit occurs (the probability is p .75)

= 0 when a miss occurs (the probability is 1 - p .25).
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Thus the N trials form a Bernouli sequence where the outcome of any trial x,

is said to be distributed like b(l,p). The distribution b(l,p) is binomial

with parameters N = 1, and p. If a new random variable, X, is defined, such

that,

N
X= x.

its distribution is given by the binomial b(N,p) where,

Pr (X = k) = 'N p kCl-p) Nk(2)

and

k Os 1, 2, ..., N; 0 <p i.

The expected value and variance of the distribution are given as:

EX Np (3)

VAR(X) = Npq (4)

where q 1 - p. Thus the binomial distribution can be considered as the sum

of N independent, identically distributed b(l,p) random variables. It should

be noted that from an intuitive perspective, Eq. 2 relates to the following

operation:
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1. calculate the probability of k hits and N-k misses occurring in

some specific order. This is pkqLN-k).

2. compute the number of different orders of k hits and N-k misses;

that is, (N), the binomial coefficient.

3. multiply the results of (1) and (2) together to get Eq. 2, the

desired probability.

The binomial model can be used to assess the inherent variability of the

calibration process. To make this assessment the following hypotheses are

considered:

H p p0 (for projection data, p = .75)

10 00

iH 1 p Po

A reasonable procedure for testing the above hypothesis would be to examine

the number of hits (k), in N trials. H is rejected if k c C, where C is the
0

critical region for the test. H is not rejected when K C c, where c is the
0

complement of C. The following errors are important with respect with these

decisions:

1. Type I error - the probability of incorrectly rejecting Ho = a.

2. Type II error -the probability of incorrectly accepting H =8
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The probability of a Type I error is

Pr (Type I error) = a = Prp=po( KNp1eC) (5)

The probability of a Type II error is

Pr (Type II error) = B = Pr P=Pi$p (IK-Npilc Cc) (6)

where i = 1, 2, ... M, the number of alternatives.

The Type I and Type II errors are computed from Eqs. 5 and 6, respective-

ly. Examination of Type I and II errors (for example, see Figure 11-10 and

Table 11-3) illustrates the true variability of the process. In particular,

the role that N, the number of trials, has on the variability is most obvious.

Thus, the main conclusion is that N must be reasonably large before reasonable

certainty can be attached to calibration decisions.

The proposed calibration procedure (Section 11.6.4) employs confidence

interval estimates of the hit rate. The confidence intervals provide, with

confidence r-a, a range of values which the estimator is consistent with. The

development of the confidence interval follows from Rohatgi and will not be

kgiven in this report. The interval estimate for the hit rate is given as:

H [ + 2, V IKTIN-K) N
H1 - + Z2/2 - z + _ + Z2) (7)

and2
z22 "/K(N-K) Z2 2

H [K + Z2/2 + Z + - (N + Z) (8)
u N 4
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where Z. = the (1 -ct/2) point from N(0,1); e.g. Z.10 1.64. H is the lower

limit of the range and Hu is the upper limit. The width of the confidence

interval is given by H1 - H This large sample approximation for the true
U

confidence interval compares well with that given by the exact distribution

when N > 10.

11.5.5. Calibration Measures

In this section, two calibration statistics, the hit rate and CAL measure,

are presented. These measures are, in part, the basis for the calibration

procedures described in Section 11.5.6. The hit rate is a measure of propor-

tion while the CAL measure reflects the percent deviation between the computed

hit rate and the assessed probability (i.e., the ideal hit rate).

Hit Rate

j The hit rate will be defined as it applies to projection data. Assume

that a number of historical projections and corresponding OB values are col-

lected. Each projection consists of a set of High and Low estimates. Over

some portion of each projection, OB values will be available. It is this data

which can be used in the calibration assessments. Then the hit rate, HR, is

defined as:

M N. I

I .HR =li MI1 (9)

M
E N

itsj =1
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where, M the number of projections over which the analysis is being

performed.

N. the number of estimates (High and Low pairs) in the jth
3

projection, 1 < j < M.

H.. 1= , if the true value (OB) for the ith estimate in thei3

.th] projection falls within the High and Low,

1 < i < N..

0, otherwise.

For the simple case in which Q/A data is being calibrated, the hit rate is

defined:

HR = Number of questions correctly answered/Number of questions asked.

Thus, for question and answer data as well as projection data, the hit rate is

a proportion.

CAL Measure

The CAL measure transforms the hit rate into a percent deviation measure-

ment. The CAL measure determines the percentage difference between the

assessed confidence or probability (the ideal value) and the computed hit rate.

The CAL measure is defined as:
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CAL HR - P 100% (10)
P

where HR = the hit rate

P = the assessed probability

Note that simple algebra allows the hit rate to be obtained directly from (10)

when CAL is known; that is,

HR P(l + CAL/100) (11)

Both the CAL measure and the hit rate statistic are discussed more fully

in Section 11.6.4. Some special comments about the CAL measure are, however,

in order. For example, in Figure 11-11,hypothetical calibration results for

four Soviet ICBM's are displayed. (Note that confidence intervals have not

been employed since the purpose of this example is to focus on characteristics

of the CAL measure.) Positive deviations from the correct result (p = .75)

imply that the width of the projection confidence interval, the High-Low

range, was on the average wider than it should have been, and that therefore

the estimator was somewhat underconfident. For example, if the deviation for

a particular system was 15 percent, then 15 percent more true values (OB's)

fell within the High-Low intervals than should have. Note, however, that a

deviation of 15 percent does not imply that the average distance between the

High and Low should have been decreased by 15 percent. It may very well be

that increasing the High-Low ranges by 15 percent would have little or no

effect on the computed CAL or hit rate. Another point is that even if it was

11-59



UNDERCONF IDENCE

30

20

SX-11SX.-18

10

% Deviation

from p =.75 J

-10

-20

X -15

-30

OVERCONFIDENCE

Figure 11-11 Calibration Analysis of Soviet ICBM's
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possible to debias a group of projections by rescaling the High-Low interval,

it may be that on the basis of a single projection, the approach is invalid.

One reason is that the calibration analysis produces results from a composite

of estimates; hence, what is effectively being investigated is an overall bias

in High-Low assessments. Further, arbitrary expansion or contraction of the

High-Low ranges may, in some cases, invalidate the assumptions and expectations

on which the forecast is based. Therefore, the calibration analysis should

be viewed as a global assessment procedure pointing towards trends in over- or

underestimation.

11.5.6. The Calibration Procedure

The application of the binomial model to calibration assessments is

illustrated. The calibration procedure employs point estimates, either the

hit rate or CAL measure, and their respective confidence intervals. There are

some key ideas associated with this procedure:

1. the estimator has assigned an assessed probability, p = .75, to each

High-Low range.

2. the estimator is probably consistent with some probability, Ptrue'

where P is not necessarily equal to p, .75.
true

3. the hit rate is the best estimate of Ptrue"

&true'
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4. the hit rate and number of estimates can be used to compute- a confi-

dence interval for Ptrue; the probability attached to this interval

is specified by the estimator. The confidence interval provides a

range of plausible values for Ptrue*

5. the calibration decision rule is based on the relationship between

the assessed probability, p, and the confidence interval. If the

confidence interval encloses p, the decision is that the estimator

is consistent with the assessed probability, i.e., possibly cali-

brated. If the confidence interval does not enclose the assessed

probability, the decision is that the estimator is not calibrated

(the confidence in this decision is that probability given in (4),

above).

Assume that a number of estimates for the MiG-21, MiG-23 and MiG-25 have

been collected, and sufficient OB information is available to conduct a cali-

bration analysis. A summary of the data appears in Table 11-4. This data is

input into the statistical model. Note that the following calibration analysis

is primarily based on the hit rate statistic.

The following output is indicative of the type of information available

in this statistically based calibration procedure. Included are a summary of

computed hit rates, CAL measures, confidence intervals for the hit rate, and

decisions as illustrated in Table 11-5. As supplement to this table, the

confidence interval plot, illustrated in Figure 11-12 is provided.
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ASSESSEDWEAPON SYSTEM NUMBER OF ESTIANTES NUMBER OF HITS HIT RATE ASSESSE,, PROBABILITY

MiG-21 35 25 .71 .75

MiG-23 40 20 .50 .75

MiG-25 10 9 .90 .75

Aggregate 85 54 .64 .75

Table 11-4: The data input to the calibration model

Table 11-5 Hit Rate-Based Calibration Assessments

CALIBRATION ANALYSIS

WEAPON NUMBER OF NUMBER RANGE OF HIT RATES ASSESSED GROUP
SYSTEM ESTIMATES OF HITS HIT RATE LOW HIGH PROB. HIT CAL

MiG-21 35 25 .71 .58 .82 .75 YES- 5.33

MiG-23 40 20 .50 .37 .63 .75 NO -33.33

. MiG-25 10 9 .90 .65 .98 .75 YES 20.00

Aggregate 85 54 .64 .55 .72 .75 NO -14.67
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Interpreting the Results

In Table 11-5, the hit rates and confidence intervals for each aircraft

are displayed. In addition, data from each weapon system have been aggregated

such that a composite analysis can be performed. Examine the individual air-

craft estimates first. For the MiG-21, the confidence interval is given as the

range .58 to .82. Therefore, there is a 90 percent chance that the true

probability (the probability with which the estimator is actually consistent)

is contained within the High-Low range. The best estimate of Ptrue is the hit

rate, .71. Note that the confidence interval contains the value .75, the

desired probability. This fact is verified in the column titled "GROUP HIT"

in which "YES" is printed. Since .75 is included within the confidence inter-

val, the estimator may be considered potentially calibrated. Note, also, that

for the MiG-25, .75 is also contained within the corresponding confidence

interval. However, since the number of estimates is only 10, as compared with

35 for the MiG-21, the result is less reliable.

If .75 is not included between the Low and High, then the data suggest

that the estimator is miscalibrated. For example, the confidence interval for

the MiG-23 is .37 to .63 and "NO" is noted in the "GROUP HIT" column. There-

fore, the estimates for the MiG-23 can be considered miscalibrated; specifical-

ly, the estimator for this aircraft has been somewhat overconfident. Asso-

ciated with this conclusion is a 10 percent risk of incorrectly labeling the

estimator miscalibrated when in fact he is calibrated. In other words there

is a 90 percent confidence in that decision.
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A general assessment of the aggregate of the three aircraft leads to the

conclusion that the estimates are somewhat miscalibrated. This is a fairly

significant result as suggested by the number of samples and size of the con-

fidence interval. In fact, since in the accompanying graph the confidence

interval is entirely to the left of the vertical line denoting .75, it can be

stated with reasonable certainty that a bias towards overconfidence may be

present.

The calibration analysis, as specified, provides an estimator with a

statistical assessment of the degree of consistency in his estimates. Through.

use of the confidence interval, the full range of probabilities of hit rates

with which the estimator may be consistent is provided. This is one approach

to quantifying the uncertainty of past probabilistic statements (i.e., uncer-

tainty in projections). The computed hit rate is the best estimate of Ptrue'

the probability with which the estimator is internally consistent. How well

Ptrue compares with .75 is proportional to the degree to which the analyst is

calibrated. Note that in the last column of Table 11-4, labelled "CAL," the

percentage deviation between the computed hit rate and .75 is provided. The

sign of CAL is useful in determining whether an overconfidence (-) or under-

confidence (+) bias is in effect. The magnitude of CAL provides a percentage

measure of the degree of bias. Finally, note that the information provided in

Table 11-5 and Figure 11-12 can be transformed into CAL-based statistics as

illustrated in Table 11-6 and Figure 11-13.
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SECTION 12

CONCLUSIONS AND RECOMMENDATIONS

The research reported here has identified two types of models of the

estimative process:

o The holistic, or top-down, approach, which begins with a broad,

general picture of the nation under study.

o The compositional, or bottom-up, approach, which begins with

detailed studies of individual elements, such as weapon systems,

combining these to arrive at a general estimate of military

capabilities.

In practice, both methods are employed in a complementary manner for the

production of intellignece estimates. They provide a check-and-balance

approach:

o The feasibility and credibility of a holistic evaluation are

dependent upon evidence of intentions and capabilities at the lower

levels. For example, the hypothesis that the Soviets expect a

Chinese attack upon their Eastern border (high-level generalization)

must be supported by evidence of appropriate defensive installa-

tions along the border (low-level specification). This in turn will

be supported by photographs and other evidence of construction in

the area.
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0 The detailed evidence of Soviet developments makes sense only in

the context of a higher-level hypothesis concerning Soviet long-

range goals. -For example, construction along the Chinese border

can be identified as defensive military developments only if we can

go on to hypothesize that the Soviets regard the Chinese as poten-

tial adversaries. Otherwise, the construction could be intended as

non-military production facilities, bases jor offensive attacks

against the U.S., or facilities for any other purpose.

Thus the top-down and the bottom-up approaches provide an interactive form of

validation for one another. The high-level estimates are verified by the

low-level observations, and the low-level observations are guided by the

high-level hypotheses, which explain them and direct further investigations.

These alternative approaches have motivated the description within this

report of two alternative methods for the quantification, aggregation, and

communication of uncertainty in estimative intelligence:

o From the top-down viewpoint, the subjective probabilities of al-

ternative scenarios are obtained from specialists. Using the

Institutional Memory described in Section 8, and statistical

methods for insuring the consistency of the probabilities attached

to these scenarios, as described in Section 11, the quality of

general hypotheses can be evaluated and improved.
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o From the bottom-up viewpoint, the probabilities of specific weapon

system developments can be combined to obtain the joint proba-

bilities of various mixes of weapon systems. Statistical methods

for combining probabilities were described in Section 6, and com-

puter-based decision systems were reviewed in Section 10.

To implement these two approaches to the aggregation and communication

of uncertainty, two general types of computer systems have been suggested:

0 For the top-down approach, a demonstration system written in

FORTRAN for the HIS GCOS operating system has been provided. This

provides a systematic method for the evaluation and resolution of

inconsistencies in subjective probability assessments, in connec-

tion with high-level hypotheses or scenarios. Programs and docu-

mentation are being furnished separately from this report.

o For the bottom-up approach, descriptions of several system designs

for combining assessments of uncertainty at the low level, to

obtain consistent higher-level assessments, have been provided in

Appendix C.

On the basis of research conducted for this project, several recommenda-

tions for future development are proposed here:

0 Studies of the estimative process conducted during this project,

and during the preceding TEAMS project, have indicated that estima-
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tive methods are not clearly defined. Most estimators learn their

tasks on the job. Although more sophisticated methods are re-

commended -- e.g. in courses conducted by Defense Intelligence

Schools -- there is no indication that these methods are actually

used. Among the estimators interviewed, for example, there was a

strong tendency to rely on informal methods (called "intuition")

and to regard assessments of uncertainty as little more than guess-

work. Our interviews have suggested that the methods actually in

use by the estimators represent the scientific paradigms ordinarily

employed in the social sciences, and that they should not be re-

garded as unscientific or inadequate. It would, however, be de-

sirable to review these methods in detail to provide estimators

with better criteria for determining the quality of their work.

o While there have been several studies of the quality of past pro-

jections, these have been performed largely on an ad hoc basis, in

response to specific requests from intelligence consumers. A

continuing process of quality control is recommended, to provide DE

with a facility for determining the existence of potential problem

areas, and for making corrections where biases and other errors

occur. TEAMS is one tool which was intended for this purpose.

Implementation of TEAMS requires the development of an adequate

data base, consisting of prior projections and the corresponding OB

data. Such a data base would provide an objective record of the

quality of estimative intelligence over the past several years, and
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would permit a rapid response to requests for such information from

intelligence consumers.

0 A second type of historical data base has been described in this

report. This is the Institutional Memory, which would consist of

the higher-level assumptions and opinions that have entered into

the projections. While it is important to know what the projec-

tions have been, it is also important to know why they ha- e be en

made. It is recommended that the data base for the Institutional

Memory described in Section 8 be developed and implemented con-

currently with the TEAMS data base.

o Estimators are frequently forced to use manual methods for much of

their work. While nearly all the estimators make use of hand

calculators in their work, very few computer aids are used exten-

sively -- the major exception being the tools provided by the

DIPPOLS data base management system. Insofar as they are poten-

tially helpful to the estimators, computer-based tools for inter-

polation, extrapolation, combination, and verification of projec-

tions should be developed. Tools like those designed for TEAMS for

production of charts and graphs should be provided. It should be

possible at any time for the intelligence producer to obtain past

projections, identify trends, and develop further projections

without the need for extensive manual preparation.
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o Several of the estimators expressed an interest in more compre-

ensive computer systems for projecting future world developments,

j as well as for more limited projections of specific weapon systems.

System Dynamics, as developed by Jay W. Forrester, is typical of

these systems (Cf. Forrester, Principles of Systems, Cambridge:

MIT Press, 1968). Our own research has not been sufficient to de-

termine the potential usefulness of these systems in the specific

context of DE's tasks. Further studies, including implementation

of a demonstration system, would help to provide an answer to the

questions that have been raised concerning this approach (H. Cole

et al., Thinking About the Future: A Critique of the Limits to

Growth, Chatto & Windus: Sussex University Press, 1973; David

Berlinski, On Systems Analysis, Cambridge: MIT Press, 1976; etc.)

One of the most striking outcomes of this study has been the dis-

covery that much) of the most effective work in estimative intelli-

gence is based upon informal models -- that is, upon the process

that estimators repeatedly called "intuition." Rather than attempt-

ing to criticize this approach, we have concentrated on the problem

of making intuition more effective -- where the word "intuition" is

taken to refer to a broad insight into the goals, technological

capabilities, and habits of thought of a potential adversary. For

this reason, our primary recommendations are for tools that will

assist in making this process more effective. Specifically, there

should be the means, like the Institutional Memory, for determining

the informal reasoning that has underlain the past estimates, and

which will assist in developing future estimates. Again, we have
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described techniques for assuring the consistency of subjective

probability assessments, where these assessments are based largely

on informal models. Finally, we have suggested that the need to

justify projections, through conferences with other members of the

intelligence community, has provided one of the most effective

means for identifying and communicating uncertainty.

i
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APPENDIX B

INTRODUCTION

This Training Manual forms a part of the Final Report for Contract

#F30602-78-C-0291, Aggregating and Communicating Uncertainty.

It consists of ten units which take the form of half-hour briefings on

methods for quantifying, aggregating, and communicating uncertainty in estima-

tive intelligence. Although the approach is specifically designed for use by

DIA/DE, most of the suggestions included here should also be of value to the

production of other forms of strategic intelligence.

The material included in this Training Manual is based upon research

which is described in the main body of the Final Report. References and

additional background information may be found there. This manual is not

mathematical or statistical in orientation. A mathematical presentation of

methods for aggregating uncertainty is included as an appendix to the Final

Report.

Topics to be included in this manual are as follows:

1. Introduction and Background.

2. Intelligence as a Science.

3. The Uses of Uncertainty.
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4. Probability Assessments

5. Combining Probabilities

6. Hindsight and Second-Guessing

7. Further Errors in Assessing and Combining Probabilities

8. Scoring Rules

9. Communicating Uncertainty

10. Conclusion
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t UNIT 1

I
INTRODUCTION AND BACKGROUND

Throughout this manual, we refer to two people; the intelligence producer

and the intelligence consumer. The producer is the person who gathers informa-

tion, analyzes it, summarizes it, tabulates it, and eventually produces a

report of some kind. The consumer is the person who receives an intelligence

report. The consumer may, in turn, become a producer if he subjects the

information to further processing; on the other hand, he may take some other

kind of action, such as developing recommendation for a military budget.

By its very nature, the information contained in an intelligence report

is uncertain. It represents the best estimate that can be made, given the

resources, time, and information available. Since it deals with the projected

actions of a foreign, possibly hostile power, an intelligence report will

often depend upon sources of information which contain errors, gaps, and

misconstruals of the nation's intentions. In addition, the intelligence

producer himself is fallible: his understanding of the material may not be

complete, or his own biases may have led him to exaggerate an estimate.

It is important for the producer to be able to communicate the uncer-

tainty present in an intelligence report, and DIA has long recognized the need

for communicating this uncertainty to the consumers of its products. In 1968,

for example, an NIE contained phrases like these:
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it is likely that

it is unlikely that

the possibility of

the likelihood of

it is probable that

they probably believe

Such phrases were intended to let the consumer know that the estimate was not

gospel. It contained valuable information, but it was not free of potential

errors.

In 1976, more precise forms for expressing uncertainty were introduced

into DIA/DE products, using such phrases as the following:

60 percent probability

80 percent likelihood

a 70 percent chance

Such expressions were applied to specific events, such as a projected

military policy.

In some estimates issued during 1976, a colored sheet containing the

following statement was included:
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"[Numeric forms are used] to convey to the reader this degree of prob-

ability more precisely than is possible in the traditional verbal form.

Our confidence in the supporting evidence is taken into account in making

these quantifications. . All efforts at quantifying estimates are

highly subjective, however, and should be treated with reserve."

At about the same time, a DIE contained the following notice:

"Completeness and Reliability of Evidence.

"The evidence . . . is based on F wide variety of sources and is con-

sidered generally complete and reliable, although not necessarily defini-

tive . . . There is as yet very little reliable evidence . . . The data

base . . is considered sufficiently reliable to support the judgments

made . . .

Another measure of uncertainty has become familiar through its use in the

DIPP volumes. Quantitative estimates freque: fly (but not invariably) include

a "high," "low," and "best" value. These are selected in such a way that

the true value should be found within the indicated range approximately 75

percent of the time. The spread from low to high, and occasional spreads

within the high and low values, have been intended to assist the consumer in

determining the uncertainty of the estimate.



In spite of DE's continuing effort to provide consumers with some

indication of the uncertainty present in its products, there is little

evidence that the consumers have actually been using this information.

Instead, a number of problems, for both the producers and the consumers,

have arisen:

o The consumers frequently take the "best" estimate as though it

were an unqualified projection, without noting the range of uncer-

tainty in the set of projections.

o In spite of warnings, some consumers appear to be taking the "high"

estimates as representing the "worst case" against which U.S. forces

must prepare. This is particularly unfortunate, since the high

projections from various sections of the DIPP cannot be combined.

(This would imply, for example, that the Soviets were placing a

heavy emphasis on two different systems simultaneously; the estima-

tor intended to show that either one system or the other could be

emphasized -- but not both at once.)

o tntelligence producers apparently also had trouble in justifying

their assessments of uncertainty. The numerical estimates of

probabilities, generally reported as percentages, were regarded as

"highly subjective." No clearly-defined methods of obtaining the

required numbers have been specified.
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o There was little motivation to improve the quality of the prob-

ability figures. They were plucked out of the air, representing

(in the view of some estimators) little more than guesswork or

"intuition.")

A vicious circle thus appears to have developed, in which neither the

producers nor the consumers take the probabilities very seriously. Producers

tend to regard them as mere guesses, and consumers tend to ignore them.

In this manual, we will generally refer to the formulation of a measure

of uncertainty as an assessment, to distinguish it from an estimate of foreign

military capbilities. A primary goal of the manual will be to show that the

assessments of uncertainty can be as important for the consumer as the

estimates themselves. In fact, we have come to believe that probability

assessments are essential, if the consumer is to make effective use of

estimates.

The goal of estimative intelligence, like that of other forms of strategic

intelligence, is the determination of the goals and capabilities of the

adversary. This would mean that an "error" could only be a failure to de-

termine those goals and capabilities correctly. Any other definition would

cast the intelligence producer in the role of fortune teller, attempting to

determine the future without the aid of empirical evidence. This defini-

tion of "error" may be somewhat difficult to enforce, since the only evidence

that we may have of the enemy's intentions is what he actually does; an

estimate is probably correct if it predicts what he does. But this
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definition does help to take the role of estimation out of the realm of the

mystical, and into the realm of the empirical sciences. Our point of view is

one that says that estimative intelligence is a form of social science.

One word that has had mystical connotations has been "intuition." The

word "intuition" was sometimes used by estimators to describe the process by

which they arrive at projections. This is rather misleading, since it suggests

that intelligence production is sometimes little more than guesswork.

The role o- "intuition" becomes more significant if we recall that

master-level checker players, who were questioned about their methods in con-

nection with a checker-playing computer program, often said that they chose

their most successful moves by "intuition." By this, they simply meant that

there were no general rules guiding their choices; instead, they relied on

their understanding of the game as a whole, their sense of the patterns

present on the checker board, their choice of a strategy for this particular

game, and so on.

Similarly, "intuition" for an intelligence producer could include a

global understanding of the nation as a whole, some insight into typical

strategies employed, a recognition of specific capabilities, and a variety of

"fringe" or ancillary factors that could influence a decision concerning

weapon development, deployment, or withdrawal.
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For example, an estimator may be considering Soviet ABMs. The current

SALT agreement may permit 100 missile launchers, as a maximum, at Moscow.

In fact, they have 64 launchers. What will they do? The estimator believes

(let us suppose) that the Soviets are very concerned to protect Moscow, and

that therefore they will increase the number of launchers around the city.

The estimator thus draws on a general model or "picture" of Soviet goals and

priorities, using it to predict a concrete action to be taken by them.

In strategic intelligence production, "intuition" is the process by

which the experienced producer attempts to take relevant factors from a

variety of sources into account, and to combine them to form a comprehensive

pattern that "makes sense" of the observed phenomena.

Of course, intuition is not a substitute for hard work. In actual

practice, projections are most frequently generated through the use of such

estimation parameters as deployment rates, rates of change, retirement rates,

estimates of ratios among weapon systems, and so on. These more mundane

figures provide the basis for determining how many weapon systems of a given

type will be deployed at a specified future date. In the extreme case, an

estimator who is pressed for time may simply use a straight-line extrapola-

tion of current trends. In any case, some uncertainty is present in the

projections, since there is uncertainty concerning all these parameters --

particularly in the timing for introduction and phase-out of a weapon system.
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A specific example may make this process clearer. In estimating future

naval systems, the estimator knows that prototypes are planned five years

in advance. Designs and requirements are specified, and, in the Soviet

Union, the vessels are produced over a period of ten years. Naval vessels

have a twenty-year life span. Using these figures, the estimator can con-

struct a simple mathematical model of Soviet naval development.

A complicating factor is the "learning curve" exhibited in the develop-

ment of a weapon system. Production begins slowly, as people in a factory

are learning how to produce a system and as bugs in production and in design

are located and eliminated. Then there is a period of rapid growth in

numbers of weapons, as maximum production is obtained, for a period of years.

Then this tapers off, as production is slowed and finally halted.

Both "intuition" and somewhat more formal models, like the one just

described, are used in the development of projections. The next important

task will be a more complete description of the estimative process, to locate

precisely those points at which uncertainty enters.
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UNIT 2

INTELLIGENCE AS A SCIENCE

Strategic intelligence is a social science. It draws upon such special-

ized sciences as history, economics, and political science. In addition,

strategic intelligence draws upon military science and the technology of

weapon systems as other sources of information.

More importantly, strategic intelligence methods most closely resemble

the methods used by working social scientists, which are often quite informal

in the way in which hypotheses are developed and presented.

Most important of all, intelligence estimates must represent a consensus

of the intelligence community. They not only draw upon the combined resources

of the community, but they must also be justified to the community. The

process of justification requires evidence and argument; it is not simply a

process of taking a vote among delegates.

This point should be emphasized. Meetings with other representatives of

the intelligence community are not merely vote-taking sessions. The majority

opinion does not prevail (or should not prevail) if the majority has no evi-

dence for its opinion, no logically-justified set of arguments. A minority

opinion, even that of a minority of one, should be able to win the required

consensus, if that opinion is properly buttressed with relevant evidence and

argument.
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It is the need for scientifically respectable arguments that motivates

this study of estimative intelligence methods. If DE's task were simply that

of taking an opinion poll among various specialists, then its job would be a

good deal simpler than it is. Instead, DE must formulate and evaluate those

opinions, selecting the viewpoint that is most plausible, in the light of

current evidence. It is in this sense that DE's wor!- can be called a form of

social science.

Here is an example of the type of reasoning that strategic intelligence

can employ:

"While working on Eisenhower's scientific advisory committee in 1959 and

1960 I had to assess some of the early claims that the Russians were develop-

ing an ABM system. The Soviets, we knew from our intelligence, had a center

for antiaircraft and antimissile work at Sary Shagan in Central Asia. Our

U-2 planes observed there a large radar installation that might, it was

thought, be a device for detecting incoming missiles. Our intelligence

experts immediately linked this installation to the Soviet tests of medium-

range ballistic missiles at Kapustin Yar, many hundreds of miles to the west.

They conjectured that the Russians were putting together the combination of

radar (to detect incoming missiles), computers (to track them), and inter-

ceptor missiles (to destroy them) that makes up an ABM system." (George B.

Kistiakowsky, "False Alarm: The Story Behind Salt II," New York Review of

Books, March 22, 1979, pp. 33-38.)
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Several elements make up tnis conjecture:

o A general hypothesis has been proposed: that the USSR is developing

an ABM system, which will include installations at Sary Shagan and

Kapustin Yar.

o Supporting evidence for this hypothesis: the observation of a radar

installation and of Soviet tests of medium-range missiles.

o A set of inferences that link the hypothesis with the observations:

the fact that an ABM installation requires the existence of radars,

computers, and missiles.

As more supporting evidence is found, the probability of the hypothesis

increases; disconfirming evidence will tend to decrease this probability.

As in all sciences, these three elements are crucial. There must be a

general hypothesis; without it, you would hardly know what counted as evidence

and what didn't. You have to know what your are trying to prove.

Evidence is essential to every empirical science. Strategic intelligence

-- more than any other science -- is based on observation; it requires

knowledge of the enemy's actions and capabilities for action.
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The third element is a set of inferences that tell us that if the

hypothesis is true, then there will be certain observable results. The

inferences provide a structure within which the scientific method operates.

The essential point is this. You must have a hypothesis. Otherwise, you

don't know what facts to collect, where to collect them, or why you are

collecting them. The general hypothesis makes sense out of a disparate

collection of data.

Evidence for the hypothesis is provided by those observations which it

implies:

0 Example 1. You hypothesize the development of an ABM facility.

This implies that radar equipment and IRBMs will be installed.

Observation of the radars and IRBM installations will provide

evidence for the hypothesis.

o Example 2. You hypothesize increasing emphasis on civil defense

in the USSR. This implies that air raid shelters will be con-

structed and a civilian warning system will be installed. Observa-

tion of the shelters and the warning system provides evidence for

the hypothesis.

The connection between hypothesis and conclusion is not logically tight,

for several reasons. These points -- where there are several logical

possibilities available -- are the points at which uncertainty enters.
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Let's see whether we can find some of the logical loopholes in the

argument that was presented as an example:

0 The initial identification of the center at Sary Shagan as a center

for antiaircraft and antimissile work is based on someone's train vf

reasoning. We don't know who he was, or what made him think that

the center had those purposes. Without this information, we don't

know whether this was just a wild guess or a firmly founded con-

clusion. The degree of credibility in this item is strictly un-

known.

o The identification of construction at this site as a radar installa-

tion is also uncertain. This time, we may have an idea of who it

was that made the identification. If we do, then we probably know

enough of his past record of similar identifications. Since

everybody makes mistakes, this record may not be perfect, but we

will at least know how uncertain the identification was.

o Is the radar installation intended to detect incoming missiles?

We have no idea. This identification is derived from our initial

hypothesis. The example shows how the hypothesis makes sense out

of the radar installation; if the hypothesis is true, then we know

what the radar installation is for; otherwise, we would only be

guessing at its purpose'.
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You should be able to find several additional sources of uncertainty

in this example, which is a good deal simpler than most of the examples you

work with in the real world. Unlike a mathematician, the intelligence

producer rarely obtains a logically tight argument; his arguments always

contain loopholes and missing, but essential, pieces of evidence. Much the

same can be said, of course, of the historian. Uncertainty is an inevitable

part of history, as of strategic intelligence. The task is to determine

how much uncertainty there is.

Like other forms of strategic intelligence, estimative intelligence is

concerned with the determination of the capabilities and intentions of a

potential adversary (and, in the case of the NATO nations and Japan, of an

ally)? Estimative intelligence differs from current and basic intelligence

in that the capabilities and intentions must be projected into the future,

where (at least for finite human beings) events are indeterminate.

In practical terms this means that the intentions of a potential

adversary may change in unpredictable ways over the course of the next ten

or twenty years. The rise of a Sadat or a Khomeini in the Middle East, for

example, has brought about changes in the intentions of the nations that they

represent. While it is possible, thanks to hindsight, to identify those

forces within Egyptian or Iranian society that gave rise to the policies

of Sadat and Khomeini, it would have been wildly speculative to have pre-

dicted them ten years in advance. Similarly, new inventions and discoveries

may contribute to basic changes in the capabilities of an adversary. Thus,
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many technological developments which are operational today could not have

been realistically foreseen ten or twenty years ago.

In short, the loose logical structure of the arguments used in estima-

tive intelligence, together with the indeterminate quality of much of the

evidence that supports them, means that a degree of uncertainty is present

in all of the finished intelligence that it produces.

At th present time, DE uses several techniques for communicating uncer-

tainty in its estimates, for the use of intelligence consumers. Since you

are already familiar with these techniques, they will not be described in

great detail here. They are listed only to indicate the ways in which DE has,

in the past, attempted to communicate uncertainty:

o Kent Charts. Until recently, DE has used reporting methods pro-

posed by Sherman Kent. Essentially, the Kent chart provides a

translation from certain natural language phrases ("It is likely

that . . . ") into numerical estimates of probability. Kent

developed this approach following his observation that the natural-

language phrases were subject to wide variations in interpretation,

and that they served to conceal disagreements concerning the like-

lihood or uncertainty present in intelligence reports.

o Reliability-Accuracy Codes. A coding system which is widely

used for qualifying intelligence reports (but which does not
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appear to have been used by DE) indicates the estimated reliability

and accuracy of the report as follows:

SOURCE RELIABILITY INFORMATION ACCURACY

A. Completely reliable 1. Confirmed

B. Usually reliable 2. Probably true

C. Fairly reliable 3. Possibly true

D. Not usually reliable 4. Doubtfully true

E. Unreliable 5. Improbable

F. Reliability cannot be judged 6. Accuracy cannot be judged

Complaints concerning this system are interesting, because they

indicate the sort of information that your consumers may be

looking for in your assessments of uncertainty. In general, the

reliability-accuracy rating system was found to be:

oo Too mechanical. Consumers would like to know the reasons

behind the uncertainty in a report, rather than a brief code.

They would like to know more about the source of material as

an aid in their own evaluation of the contents.

oo Too few categories actually used. Too often, the rating would

be given as"undetermined" or would be given some middle-

ground evaluation. Consumers would like more discrimination

among the levels of uncertainty.
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oo Accuracy and reliability not separated. The accuracy and

reliability ratings were not independent factors, to judge

from the way in which they were used. If two different ratings

are to be given, they should not simply be duplicates of one

another. Apparently, neither the producers nor the consumers

were able to keep them separate.

oo System under-used. Only 48 percent of spot reports in an

Army field exercise were rated for both reliability and

accuracy. This suggests that tactical intelligence personnel

simply did not have the information necessary to provide

reliability and accuracy ratings. It also suggests that if

they were forced to provide such ratings, they would probably

be guessing. Simple guesswork would not be useful for the

consumers.

oo Ratings mostly the same. In the Army exercises, category B2

alone contained 74 percent of all ratings. This indicates

that the ratings were not of much help to the consumers in

distinguishing levels of uncertainty among the reports.

oo Ratings inconsistent. Even experienced intelligence analysts

gave conflicting ratings to the reports, and these incon-

sistencies could not be removed through training. Obviously,
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intelligence personnel had difficulty in using this rating

system. Consumers would have difficulty in taking the ratings

seriously, if different intelligence analysts could not agree

on the ratings to be assigned to the same reports.

It should be noted that these difficulties were observed in the assign-

ment of ratings to tactical intelligence reports in Army exercises,

using a system which has not been employed by DE. The same difficulties

can nevertheless be expected in the use of almost any rating system, in

strategic intelligence applications as well as in tactical intelligence.

A more effective approach is needed.

O Numerical Assessments. In 1976, a system of numerical assessments

of the probability of estimates was introduced into DE products.

Typically, these include parathetical statements of the form

11(70 percent probable)" or 11(60 percent likely)." These are much

more precise and less ambiguous than phrases like "It is somewhat

likely that . .," but for this reason they may be harder to pre-

pare. An estimator who was willing to say "It is somewhat probable

that . . ., might not be willing to commit himself to a definite

number. The numbers are just too precise to be determined with

any degree of confidence. Another problem has been that there is

little feedback. Was a figure like "80 percent probable"

warranted? There is no way of finding out, because there have

been no detailed studies of the success of projections of this

type.
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o Confidence Ranges. In addition to the probabilities assigned to

specific events or developments, DE provides confidence ranges for

numerical estimates of force levels for most countries. (A single

estimate, not a range, is provided for noncommunist nations.)

Roughly 75 percent of the actual values will be found between the

High and the Low values of the range. Since there has been little

effort to verify this figure, it can simply be taken as a general

indication of the uncertainty of the projected values. Both the

producers and the consumers tend to ignore the "75 percent"

figure, and to assume that the High figures reflect an all-out

effort, while the Low figures represent the minimum plausible

effort.

o General Assumptions. At the start of each DIPP, and in footnotes

throughout the DIPP, assumptions are stated which assist in

comunicating some of the uncertainties present in the projections.

Assumptions may include the observance or nonobservance of a treaty

(such as SALT agreements), lack of major hostilities, continuation

of the present regime, etc. While no probabilities are attached to

these assumptions, users of the DIPP are thereby warned that the

published estimates are conditional upon them. Thus, they assist

in conveying some degree of uncertainty for the reports to which

they are attached.
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o Lack of Consensus. Occasionally, no consensus is obtained among

the agencies responsible for developing estimates. When this

occurs, a footnote or appendix may be added, indicating the lack of

agreement, together with some of the justification provided for

the dissenting position. When there is no agreement, such foot-

notes or appendixes assist the consumer in evaluating the degree of

uncertainty that may be present in a published projection.

Three conclusions from this survey are particularly impressive:

o DE has repeatedly attempted to convey the degree of uncertainty pre-

sent in its estimates, using a variety of techniques.

" Intelligence producers find it difficult to assess the degree of

uncertainty precisely.

o Intelligence consumers are not satisfied with current methods of

reporting uncertainty, as evidenced by the fact that they rarely

make use of this information.Ii
With these preliminaries out of the way, we can turn now to the major

question: Is there some more effective way of assessing and communicating the

uncertainty of an estimate?



Projections over a limited time -- over perhaps as many as five years

-- can be made with some assurance, on the basis of extrapolations of known

technology, known production capabilities, and reasonable assumptions con-

cerning intentions. Beyond this point, however, assurance drops off

rapidly. It may not be known, for example, when a given weapon system will

be regarded as obsolete, and errors of several years may occur in predicting

this point. Even though you may correctly predict that a system will be

abandoned in, say, the five-to-ten-year time frame, an error in predicting

the exact date may result in serious numerical errors during the years over

which your error extends.

For example, you may believe correctly that an aircraft type will be

abandoned at some time between 1985 and 1990. Your projections indicate

that this data will be 1987. As it happens, the retirement date for this

aircraft turns out to be 1989. This minor error will mean that the actual

numbers of this aircraft will be considerably higher than your projections

for the years 1987-1988.

This type of uncertainty is difficult to handle under the current re-

porting system, which indicates a high and a low projection for each year

along the vertical axis. In this case, however, the uncertainty lies along

the horizontal axis; it is an uncertainty concerning the time of retirement,

,A rather than an uncertainty concerning the number of aircraft. To indicate

this uncertainty, a horizontal line, labelled "year of retirement," could be

added to graphical presentations of the projections, in addition to the

vertical line representing the number of aircraft for each year.
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In addition, notes to the projection could indicate the reasoning that

went into it. These notes permit the consumer to evaluate the degree of

uncertainty to be attached to the specific numbers.

For example, a hypothesis, such as a date for withdrawal of the Badger,

is proposed. Arguments for or against the hypothesis are considered: The

Soviet tendency to retain obsolescent equipment, the record of success of the

aircraft, lack of evidence of new equipment to replace the Badger, the general

need for aircraft with these capabilities within the Soviet defense system,

outstanding orders from satellite nations. Alternative hypotheses are

considered and evaluated. A selection is then made from among the competing

hypotheses, a probability is attached to indicate the degree of uncertainty

that it contains, and the most-likely hypothesis then serves as the basis for

a defensible projection.

This last example suggests the need for a flexible system for reporting

uncertainty, rather than a mechanized or stereotyped system. If measures of

uncertainty are presented in a variety of ways, to fit the data and the

subject matter, they may do a better job of convincing the consumer that he

ought to take them seriously.
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UNIT 3

THE USES OF UNCERTAINTY

In a sense, reporting uncertainty provides you with a hedge. If you say,

"There's a fifty-fifty chance of X," then you can't be all wrong, no matter

what happens. But excessive hedging makes it more difficult for the person

who eventually has to use your report, the intelligence consumer. He is

not going to be happy with a report that gives him no basis for his decisions

or other acti:ns.

In this unit, we will argue first for the use of numerical expressions

of uncertainty. While you can never, of course, be completely certain of the

truth of your predictions -- this would imply that you were some kind of

clairvoyant -- you can at least be precise about the degree of uncertainty

that you believe that they contain. Numerical expressions give you this

kind of precision.

Numerical expressions ("There is a 60 percent chance that . . .") are

useful to several types of consumers, and to the producers themselves:

o In the development of games and simulations, it is important to

include the probabilities connected with each scenario. These

probabilities form the basis for evaluating the plausibility of

various outcomes. In a training situation, for example, the

trainee should be faced with a realistic mix of weapons and forces,

B-3-1

, p''

II ll 'I4II I ~ m . . .



which can be derived from the probability distributions supplied

as inputs to the program. These probabilities -- these numbers --

have to be obtained from intelligence estimates. If the estimates

are vague -- if they use expressions like "It is somewhat probable

that . . ." -- then the programmers of the games and simulations

will simply have to guess at the actual probabilities involved.

Guesses about the meaning of "It is somewhat probable that . . ."

are not likely to be very reliable. Experiments have shown that

people can guess anything from 0.40 to 0.80 as the actual proba-

bility intended by this phrase. What is worse, the estimator may

not even have known what probability he intended by it -- he may

only have been hedging his estimate.

Providing a precise assessment of uncertainty in numerical form

thus helps one group of users, by providing them with the numbers

that they need for games and simulations. In addition, it forces

you to think about the degree of uncertainty that is present in

your estimate, and not merely to use a verbal expression as a

hedge.

o A second major area in which consumers require numerical assess-

ments of uncertainty is that in which recommendations must be made

for research and development of U.S. forces and systems. It is

important not only to know the specific projected strengths and
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weaknesses of Soviet, Chinese, and other foreign military powers; it

is also important to know the probability that various levels can be

attained.

If the U.S. had unlimited monetary and material resources capable of

developing overwhelming capacity to respond to every conceivable

threat, there would be no need for assessing uncertainty in DE's

projections. All U.S. capabilities would be developed to their

maximum.

I
It is hardly necessary to discuss the reasons that this approach to

military strategy could not possibly be considered. In any case,

intelligent military strategy requires that available resources be

used in the places in which they will do the most good. Under these

conditions, it is important to know, with some precision, exactly

what probability to attach to various potential threats. In this

way, limited resources can be directed to exactly those areas in

which they are most likely to be needed.

Numerical assessments of uncertainty can assist by providing a

clear-cut basis for recommendations for U.S. weapon system develop-

ment, required by U.S. strategic planning.

0 Not only research and development, but production and deployment

of U.S. weapon systems will depend on the projected defense posture

of the US. and other potential adversaries. The probabilities
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associated with a projected Soviet development will have an effect

on the U.S. defense posture, which must be prepared to counter the

most probable enemy threats.

o Numerical assessments of probability are also useful to intelligence

producers. They need an accurate method for determining when their

work in the past has been correct. Vague expressions like "There is

some likelihood that . . . " cannot be adequately evaluated, in the

light of later developments. On the other hand, a numerical expres-

sion, like "There is a 30 percent probability that . . ." can be

given a well-defined score, which will assist the intelligence

producer in determining exactly how good his work has been, and

where the trouble spots are.

Four potential applications for a measure of uncertainty have been sug-

gested; the next step is to describe precisely what this measure does. What

are we measuring?

In a sense, any consistent set of words or numbers could be used to

represent your assessment of the uncertainty of an estimate. You could use

"A" to represent complete certainty, and "E" to represent complete uncer-

tainty, for example. You could use the numbers 1 to 100, or any other set of

numbers, provided that the consumer knew what the letters or numbers meant.
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For the types of application that we have suggested here, however,

the most useful set of numbers would be those that represent the probability,

likelihood, or possibility of the event, or the plausibility of the pro-

jected figures or other estimates. Such a probability is assessed in the

light of the information available today. If the quality of the information

available to you is good, then the degree of certainty will be high, and the

probability will be close to 1.0. If your information is doubtful, and the

hypotheses that you build upon it are speculative, then the degree of

uncertainty will be greater, and the probability will go down.

Although you will probably never want to claim that you are absolutely

certain of anything, at the same time you have a supply of information and

assumptions which are not really doubtful. The numbers, dimensions, capa-

bilities, and deployment of a variety of Soviet equipments are known, for

example, to the extent that it would be wasteful of your time and your

reader's time to attempt to deal with probabilities in connection with

them. Well-documented, thoroughly confirmed information can be given a

tentative probability rating of 1.0, indicating that there is no good reason

to doubt it.

At the other end of the scale, there are situations about which we seem

to know nothing whatever. It is hard to imagine a projected event about

which we actually know nothing; if this were the case, we would not even

know how to describe the event, at least not with any understanding. For

example, suppose that I have thrown a pair of dice, and have covered them

with my hand. Has a seven come up? If you were tota1'v uncertain about the
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outcome, you would nevertheless have to know that each die has six sides,

with the numbers 1-6, and that there is no reason to believe that any one

number is more likely than any other. This is background information that you

need simply to understand what it means to throw a pair of dice. Thus, you

could say that, if you were totally uncertain about the outcome of a roll of

the dice, then the probability that it is a seven is 6/36, because that repre-

sents all the possible ways that it could come up seven, divided by all the

possible ways that it could come up with any total.

In other words, total uncertainty is represented by the probability of

the event, based on whatever background knowledge is available concerning

events of this general type.

For example, if you were forecasting the weather and, thanks to a

freakish electrical connection, you could gather no data concerning tommorrow's

weather, you could produce a forecast based on your general background

knowledge of the climate. If it generally rained on 40 percent of the days

in your area in October, then you could forecast a 40 percent chance of

rain -- a reflection of your total uncertainty about any specific day.

To assess a condition in which your uncertainty is complete, then, you

assign a probability based on your general background knowledge of events

of this type.
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Note that, in general, the probability associated with total uncertainty

is not "fifty-fifty." A 50 percent probability occurs only in those situa-

tions, like a flip of a coin, in which your general background knowledge

suggests that the two possibilities are equally likely, and that no other

events are pos~ible. Your total uncertainty concerning the outcome of a flip

of a coin can be expressed by your assessment of a 50 percent probability

that a he7. (or a tail) will come up.

There are two extremes, then:

o Total certainty, with an assessed probability of 1.0, which is

claimed for that information which is so well-confirmed that it can

no longer be called into question.

0 Totai uncertainty, with an assessed probability that depends on your

general background knowledge concerning events of this type, which

is applicable to information for which you have no confirming or

disconfirming evidence.

From a value for total uncertainty, each new piece of information raises

or lowers the probability of a proiected event. For example if the probability

of rain is 40 percent, then your observation of a rising barometer will

suggest that this probability shouild be decreased; a falling barometer will

suggest that it be increased. An increase or decrease in relative humidity,

a change in wind direction, an observation of cloud patterns, and more

global information obtained from satellite photos, for example -- all of
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these sources of ne', information will affect the initial (or prior) prob-

ability that you have assigned. They combine to form the final (or posterior)

probability, which is a measure of the uncertainty of the event, on the basis

of both old and new knowledge.

A familiar situation in intelligence work is that in which some of the

information is missing. There is no way of finding out -- short of invisibly

attending a meeting at the Kremlin -- exactly what the Soviets plan to do

concerning a certain type of equipment.

This is the problem of "missing data," and it is a familiar one in

all the social sciences including and especially history: for large sections

of history, essential pieces of information have been lost forever and can

never be recovered.

The effect of missing data is to increase the uncertainty of the estimate.

This means that the estimate is pushed closer to the prior probability than it

would be if the data were available. For example, construction work is

observed at Factory X. If you could obtain information concerning the purpose

of this construction, it would increase or decrease the probability that

helicopter Y is eventually going to be produced. But you do not know the pur-

pose of the new construction at the factory. Therefore, the uncertainty

concerning the helicopter remains.
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Suppose that we hypothesize that the Soviets have a requirement for

equipment capable of transporting heavy munitions quickly to otherwise

inaccessible areas along the Eastern front. Large helicopters would be ideal

for this purpose, if the engineering problems could be solved. Given your

general background knowledge concerning Soviet requirements, policies, and

technology, you assess a 40 percent chance that the Soviets will produce and

deploy several large helicopters of the Homer class by 1985. Next, you re-

ceive information concerning construction of Factory X. If you could obtain

information concerning the purpose of Factory X, it might increase or de-

crease your confidence in your projection of the production of lai~ge heli-

copters. Unfortunately, you can obtain no information, and you can only

hypothesize that Factory X could be used to produce Homers. It is consistent

with your hypothesis, but it neither supports nor undermines It. Until you

have additional information concerning Factory X, the probability remains

at 40 percent.

In other words, missing data simply represent the source of some of your

uncertainty concerning an estimate. Since some data will always be missing

in any interesting problem in strategic intelligence, the primary problem is

the development of methods to communicate the resulting uncertainty to the

consumer.

Your general understanding of the nation helps to provide a context which

will limit the effect of missing data. Like a partially-completed picture

puzzle, it provides a general picture of the policies and capabilities of a

potential adversary. While you may not know the details of a specific



meeting in the Kremlin, you can at least gain some idea of what would happen

at such a meeting, based on your general knowledge of Soviet attitudes, com-

bined with all the information that you do have concerning Soviet activities

before and after the meeting.

In short, the scientific method requires that you account for all the

available data within the context of a general hypothesis concerning the

phenomena that you want to investigate. As new data are obtained, they tend

to verify your tentative hypothesis; or they may cause you to modify or reject

it. The role of missing data, then, is to increase the uncertainty present in.

your general picture of the nation; if all data were missing, uncertainty

would be total, and if no data were missing, then there would be no uncertain-

ty.

Another source of uncertainty in the initial data may derive from errors

in such sources of information as the various orders of battle (OBs), which

provide the base line for projections. If the initial . ure for a projection

is incorrect, then this error will be propagated throughout the projection,

resulting in an underestimate or overestimate over the entire period.

Like all pi- ducts of the intelligence community, the OB represents an

estimate; it is an estimate of current force levels, and is, presumably, an

authoritative source of information. Since it is an estimate, however, it is

subject to correction. For example, more accurate sensor systems or more

effective methods of analysis may produce better estimates of enemy force

levels.
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The variability of the OB over a period of time will introduce a degree

of uncertainty into your projections, to the extent that projections are based

upon the OB. The variability, and therefore the uncertainty, of your projec-

tions are increased by the amount of variability present in the OB. It may

be somewhat difficult to introduce this degree of uncertainty into projec-

tions, since the OB is usually taken as a given, a unique figure for the year.

But the variability of the OB can be taken as the minimum variability that is

present in your projections. That is, you cannot expect to do better than the

OB in eliminating uncertainty from your projections of the future. A review

of errors in the OB, then, will help to give some sense of the types and

amounts of errors to be expected in estimates of future forces and capabili-

ties.

An additional source of uncertainty, which is present in all intelligence

work, is conscious deception on the part of the foreign power under study.

Even our allies may habitually provide misleading figures concerning their

capabilities. One nation, wishing to conceal the extent of its defenses, may

produce figures which are much smaller than the actual figures; another nation,

which wants to give an exaggerated vision of its capabilities, may provide

artificially inflated figures.

Intelligence producers are aware of deceptions like these, and may

revise their project'ons toward more realistic numbers than those provided by

the governments themselves. Even when there is no conscious deception,

military leaders in a small nation may have an exaggerated (or excessively

modest) view of their own country's financial or technical capabilities. A
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more difficult task is provided in some instances by those nations in which

there are simply no realistic figures available to anyone. Under these con-

ditions, the task of the intelligence producer is to develop realistic pro-

jections on the basis of whatever data may be available.

What is required is a comprehensive understanding of the goals and capa-

bilities of the nation as a whole. Typically, you work from your knowledge of

the country's history, its aspirations, the specific goals of its leaders;

these are combined with your understanding of its technological research

capabilities, its production capacities, its economic resources. No political

leaders have a completely free hand to accomplish whatever they want; on the

contrary, some of the most tyrannical leaders have demonstrated most clearly

their inability to move the nation in the directions that they seemed to want.

The political realities, then, will also shape the country's future.

In developing a picture of the nation, every factor which might influence

the development of a weapon system can be taken into consideration -- the

national economy, domestic and international policy and goals, the location

and capacity of production facilities, natural resources located within the

nation or available through its allies, technological capabilities and the

output of research laboratories, areas which are receiving special atten-

tion in research, the power base of the current regime and the likelihood

that it will remain stable, the organization and leadership of the armed

forces, military policies which have become traditional -- in short, many

aspects which, together, form a "model," or rational intellectual picture,
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of the nation as a whole.

* With a clearly-defined model of the nation, it is possible to develop

reasonable estimates of its present and future capabilities in specific areas.

For example, since you understand the importance of the five-year plans for

Soviet resource development, and since you understand that the Soviets are

rather slower than the Americans in disposing of obsolescent equipment, you

can make some reasonable estimates of the dates by which a given weapon sys-

tem will be replaced.

A clearly-defined and correct model of Soviet intentions and capabilities

provides a basis for dealing with the uncertainty that is introduced through

deception. The deception itself fits into the pattern of overall Soviet

strategy, which provides a rationale for the deceptive maneuver. Within

obvious limits -- the model itself must be tested against reality -- the use

of a comprehensive model provides a defense against deception.

Several sources of uncertainty have thus been seen to enter into the

intelligence production process: missing data, errors in the OB, and de-

ception on the part of friends and enemies. It is important to recognize

and report these sources of uncertainty. At the same time, a comprehensive

understanding of the nation can assist in reducing the degree of uncertainty

that sources like these can introduce.
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UNIT 4

PROBABILITY ASSESSMENTS

The proper definition of "probability" has been a subject of controversy

from the time that probabilistic methods were first introduced in the Seven-

teenth Century. From a purely subjective point of view, probability might

be said to measure the degree of credence that we place in some hypothesis

or other proposition. If we believe very strongly in something, then we

ascribe a high probability to it -- from the subjective point of view.

Clearly, our subjective probability may be wrong. I may believe very

strongly in my chances of winning in a game of poker against a riverboat

gambler; but an objective observer would have to say that my chances are much

smaller that I think they are. In general, as I look back over my lifetime,

I can think of many times in which I believed very strongly in something,

only to have it turn out to be false. For this reason, I generally look

upon my own strong beliefs, and especiallythe'strong beliefs of other persons,

with a good deal of skepticism.

A major contribution of the Seventeenth Century probabilists was an

alternative approach to the measurement of probabilities, which is objective

in nature rather than subjective. It takes two forms, which we will label

"analytic" (or "a priori") and "synthetic" (or "a posteriori").
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The analytic approach is based upon the definitions of the objects or

entities involved. For example, if we define a "fair die" as one which is

equally likely to come up with any one of its six faces showing, then it fol-

lows logically and mathematically that the chance of any one face coming up

(such as the four) is 1/6. This is a logical consequence of our definition

of "fair die." If the chance of the four coming up were anything other than

1/6, then it wouldn't be a fair die.

We can, of course, test any specific die to find out whether it is fair.

We can throw it a hundred times, and count how many times it comes up one,

two, three, and so on. If, on every one of the hundred throws, it comes up

six, then we can say, "It is not very likely that this is a fair die." And

we can easily compute the likelihood that it is fair; this probability is

100 -78
(1/6) 1.5306 x 10- , which is a very small number. A die which came up

six in every one of one hundred tosses, then, would not be likely to be a

fair die.

The other approach to measuring probabilities is the synthetic approach.

Instead of beginning with the definitions, it begins with a count of the

proportions present in a population. Since this approach has been used by

actuaries for determining insurance rates, it can also be called an "actuarial"

approach.
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Suppose that you have received 10,000 Christmas tree lights for deco-

rating your offices. How many of them are faulty? Without attempting to test

the entire lot of them, you decide to test 100 of them, to get some idea of

the number of faulty bulbs to expect. Suppose that 10 of the bulbs refuse

to light, or burn out immediately. Then your best guess concerning the entire

lot of bulbs would be that the same proportion, or 10 percent, would be

faulty.

Of course, this example is much too simple, because you would also want

to know - to determine how many spare bulbs to order - how likely it is that

15 percent of the total might be faulty, or 20 percent, or some other pro-

portion. A statistician could easily provide a reply to these and many other

questions.

Three approaches to the measurement of probability, then, are (1) a

subjective approach, measuring our degree of belief; (2) an analytic approach,

based on the definitions of the entities involved; and (3) a synthetic ap-

proach, based on a statistical investigation of the behavior of similar

entities in the past.

All three types of probabilities play a role in determining the uncer-

tainty of intelligence projections, but this manual will concentrate on the

first type, "subjective" probabilities, because they are most useful for

intelligence estimates; they are also most controversial, because they are

difficult to measure, may differ from person to person, and are difficult to

evaluate. Where they are available, mathematical and statistical probabili-
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ties (the second and third types) should certainly be used in measuring and

communicating the uncertainty of intelligence estimates. For example:

o The known resolution accuracy of an aerial camera gives a precise

range of error in the estimation of the length of a Soviet missile,

photographed from a satellite at a known height. For any photo-

graph, there is statistical distribution of possible lengths of

the object photographed. On the basis of this information, you

could, for example, determine the probability that two photographs

represent missiles of the same length, or missiles of two different

lengths. This result would not be based upon a large-scale sta-

tistical survey of missile plitographs, but upon the character-

istics of the equipment involved. It would therefore represent a

probability distribution which used the second, or analytic, ap-

proach.

0 Barracks are under construction near a new Chinese factory. Pre-

vious experience, including accurate counts of personnel at 100

other Chinese factories, indicates that the Chinese provide 20

square feet of floor space per person in their barracks. This

factor may therefore be used in estimating the number of persons

to be employed in the factory. In addition, previous experience

has shown a degree of variability in the amount of floor space

allotted; knowledge of this variability permits you to set upper
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and lower bounds on your estimate of the number of persons to be

employed. Use of this approach to the estimation of probabilitie,

would represent the statistical, actuarial, or synthetic approach.

o Reports from a government agency indicate that the Soviets are

developing a new type of radar specifically to detect and track

U.S. cruise missiles. The agency estimates that 100 such radars

will be deployed and operational by 1985. In checking their report,

you find a large number of unanswered questions concerning the ac-

curacy of their information and the validity of many of the in-

ferences that they have drawn. You are willing to say only that

there is some chance -- say 40 percent -- that the radars will

actually be installed by the target date. You do not, of course,

base this figure on any large-scale statistical study of radar

installations. And you are not using any techniques of mathematical

analysis to arrive at a well-defined number. Instead, you are

saying that you think that there is some possibility that the

installations will be completed, but you feel that there is some-

thing less than a fifty-fifty chance that they will be. You are

stating, in short, a subjective probability.

Interviews with DIA estimators have indicated that probabilities of

this type -- subjective probabilities -- were far more frequently used than

probabilities of the other two types. For this reason, we will concentrate
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upon subjective probabilities in this report. Because the word "subjective"

carries connotations of guesswork, we generally use the term "probability

assessments" to refer to them. Probability assessments can be calibrated. in

such a way as to permit their use in a consistent, well-founded manner.

Many of us are nevertheless hesitant about assigning probabilities to

individual events, because it is difficult to determine precisely what is

meant by such probabilities. Suppose, for example, that you yourself are

playing solitaire with your own deck of cards. You shuffle it several times,

cut the deck, and place the top card face-down on the table. What is the

probability that the card is the ace of spades? Most of us would say that is

1/52 = 0.019. We have no serious problem in estimating this probability --

which is an "analytic" probability based on the definition of the card deck,

and of a random draw from such a deck.

Next, suppose that the card comes from an unfamiliar deck, which belongs

to a riverboat gambler. He has shuffled and cut the deck himself. He is

wearing a baggy coat that could easily conceal some extra cards. And you

stand to lose a substantial amount to him, if you fail to guess correctly.

Now, what is the probability that your guess will be correct?

Obviously, the probability in the second example is much more difficult

to estimate than the probability in the first example. There are an in-

definitely large number of factors which may be relevant to the estimation,
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including unknown factors -- such as the possible presence of a conspirator

among the onlookers. A really clever opponent will be attempting to find

exactly those ruses that you have neglected to identify.

It should be clear that the situation faced by the intelligence es-

timator is considerably closer to the second example than to the first.

Our potential adversaries have absolutely no reason to play a "fair" game,

if it is not to their advantage to do so. They may be expected to take

advantage of every opportunity for concealment or misrepresentation of their

capabilities and intentions.

Because of the large number of elements that can serve to increase or

decrease the probability of an intelligence estimate, it is rarely possible

to rely on mathematical or statistical probabilites. Instead, the judgment

of an experienceed intelligence producer, who car take into account the

many factors that may affect the probability of an estimate, must be used.

A subjective probability represents your estimate of chance that a

given proposition will be found to be correct. Like other probabilities,

it is expressed as a proportion, in the range from 0.0 to 1.0. A subjective

probability can be correct or incorrect, depending on the degree to which it

is well-calibrated. Calibration is defined in terms of a statistical prob-

ability: over a large number of subjective probabilities, if you have as-

signed a probability of 0.70 to some propositions, then 70 percent of them
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should be found to be correct; and similarlv for other probabilities. If

these proportions hold, then you are said to be well-calibrated; if they do

not hold, then you are biased toward conservatism (if you underestimate proba-

bilities) or toward anticonservatism (if you overestimate them).

You are well-calibrated, then, if you do a good job of evaluating the

quality of the information that you have, and if you have a realistic sense of

your own ability to examine and to integrate this information.

Much of the remainder of this manual is devoted to the development of

methods for producing well-founded probability estimates. In this unit, we

will suggest two general approaches to the quantification of uncertainty, the

holistic and the compositional:

The holistic approach deals with wholes, the organic, inclusive struc-

tures of events. In artificial intelligence applications, these wholes are

sometimes called frames, scripts, or scenarios. We w.ll use the term "sce-

nario" to refer to the inclusive structure of hypothesized future events,

which fit together to form a consistent whole.

Using the holistic approach, the intelligence producer provides a proba-

bility for the scenario as a whole; based on this overall estimate, figures

for the individual components can be derived. Here is a somewbit artifical

example:
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It is well known that many of the more hawkish forces within the Soviet

Union believe that a large-scale nuclear war can actually be fought and won.

On the basis of this belief, they may be expected to emphasize those elements

of the Soviet military structure that would make such a war possible. Of-

fensive missiles in concealed, hardened locations might be among the elements

of this strategy. An increase in submarine forces might also be considered,

with deployments which would permit effective launches of SLBMs against

the U.S. continent at a moment's notice. Civil defense equipment would be

maintained, and training would help to insure survival of the civilian pop-

ulation during a U.S. retaliatory strike.

A scenario would contain the details of this plan. Prepared by U.S.

intelligence personnel, it would begin with the overall approach, and would

contain the actions and developments that would be essential in carrying the

Soviet plan into action. Since the scenario begins with the overall plan,

we call this approach "top-down"; it begins at the top of a plan, and works

down to the smaller details.

Probabilities are next assigned to the plan in a top-down fashion.

Based on U.S. knowledge of the composition of leadership in the Soviet Union,

and upon a general view of Soviet intentions, a probability figure is obtained

for the total scenario. Next, probabilities can be assigned to each of the

major components of the scenario. For example, if the Soviets are preparing

for a major offensive nuclear war, then the probability is very high that

4.
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they will develop an effective civil defense structure.

Calculation of the probabilities for the elements of the scenario are

straightforward. For example, suppose that the probability of an overall

Soviet plan for aggressive nuclear war during the next five years is 0.35.

Suppose that, if such a plan were implemented, then an increase in civil

defense allocations carries a probability of 0.90. We may now calculate the

unconditional probability of an increase in civil defense as 0.35 x C.90 =

0.315.

Of course, we may know from other sources that civil defense is being

emphasized in the Soviet Union. This means that the actual probability that

we attach to this development is greater than 0.315. In its pure form,

however, the top-down, holistic approach derives these probabilites only from

the probabilities attached to the top-level scenarios, and the conditional

(if-then) probabilities that are included in the scenarios.

The oompositioi.al approach begins with individual events. It could be

called a "bottom-up" approach, because it begins with the low-level individual

developments and works upward to the most general ones.

Probabilities are assessed for specific events (such as a Soviet de-

cision to develop a cruise missile), and a probability range is assessed for

a quantitative projection for a single weapon system. These probabilities

are then combined to obtain higher-level probabilities -- ol-fining, for
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example, a probability distribution for all offensive missiles, then a

distribution for all missiles combined, and finally a probability distribution

indicating the total combined strength of all Soviet military resources.

The compositional approach is often used in decision analysis; because

it frequently relies on Bayes' theorem, it is sometimes called "Bayesian

analysis." This approach has been extensively studied, and it is supported

by several computer-based systems.

These two approaches, then, the top-down and the bottom-up, give us a

pair of methods for aggregating uncertainties -- for going in a consistent

way from the probability of one event or development to the probabilities

of related developments.

-
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UNIT 5

COMBINING PROBABILITIES

Every report that you receive is somewhat uncertain. No source of

information is totally free of errors. Nevertheless, by combining reports

from several different sources, you can often obtain a composite picture

that is more certain than any of the reports that make it up.

This unit provides a brief overview of methods for combining probabili-

ties. In keeping with the non-mathematical tone of this manual, there is no

attempt to provide a full introduction to statistical methods; Howard Raiffa's

Decision Analysis: Introductory Lectures on Choices under Uncertainty

(Reading: Addison-Wesley, 1970) is a particularly good textbook in this

field, and the mathematics are elementary. Here, we will use mathematics

only when it is impossible to avoid them.

The problem that we want to solve is this: How can you determine pre-

cisely the degree of uncertainty to be attached to an estimate or projection,

when the estimate is based on several sources of information, each of which

is somewhat doubtful? For example, we know that information obtained from

defectors and prisoners is likely to be self-serving and therefore faulty.

However, if several prisoners independently agree on a report, we are much
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more likely to believe their combined story than we would be to believe any

one of them taken separately.

In the same way, if several radar reports, photographs, and infrared

sensors independently agree in identifying a group of missiles under test

at one location, you would attach a higher degree of certainty to the identi-

fication than you would to any one fallible report standing alone.

The problem, then, is the most effective, statistically correct method

for combining measures of uncertainty attached to various reports, in order

to get an aggregate measurement of uncertainty.

Before continuing, we should emphasize three things:

o Statistical methods are designed to assist humans in the production

of intelligence estimates, not to replace them. There is no sub-

stitute for the human being who has a broad understanding of the

goals and structure of a foreign nation, of the technology m ,uired

to support its goals, and of its ability to achieve them. In

practical terms, this means that your own good sense would be

used to correct the results of a statistical analysis -- not

because there is something wrong with statistics, but because

the statistical model may not be taking all factors into con-

sideration.
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o In all cases, we are assuming that reports are "fallible" or

"somewhat uncertain." Obviously, in this imperfect world, no

one is ever infallible. At the same time, we do have a substantial

body of confirmed knowledge concerning Soviet military capabilities

(and, to a lesser extent, those of the PRC and other nations of

interest). It would be a waste of your time to attempt to develop

elaborate statistical procedures for handling the uncertainty of

this body of knowledge. It would be wasteful to assign, say, a

95 percent probability to the fact that the USSR now has pre-

cisely 2 Moskva-class helicopter cruisers, if you have a sub-

stantial body of evidence to support this figure, and no reason

whatever to doubt it. The "95 percent" figure will simply re-

quire additional work for you in subsequent computation, and

cause needless worry for the consumer who takes it seriously.

If this is a substantially documented piece of information, then

there is no need to treat it as uncertain at all; you can siply

take it as a fact.

0 The need for "independence" among the reports is based on a desire

to keep the statistics simple. In practical terms, it means that

reports have come through distinct channels; for example, a de-

rfector's report is confirmed by aerial photography. Obviously,

* not all reports are independent. For example, a story conceining

Soviet aircraft may appear in both Pravda and Izvetsia. Since
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both papers represent the views of the Soviet government,

their articles do not tend to confirm one another; they are simply

two versions of a single report. Thus, if the probability of a

story in Pravda is 20 percent, the appearance of a corresponding

story in Izvetsia does not increase this probability.

Suppose now that two reports of an event, such as a successful test of

a new anti-satellite weapon, are received. Suppose also that these reports

are independent. If we know the probability that each of these reports

separately is correct, what is the likelihood that they are correct when taken

together; that is, when they confirm one another?

A very simple probabilistic model for this problem might be the follow-

ing. We call the first source of reports A, and the second source B. Suppose

that 70 percent of the reports produced by A are correct, and 80 percent of

those from B are correct. Since the two reports confirm one another, either

both are correct, or both are wrong. What are the probabilities, then,

that (a) both are correct, and (b) both are wrong?

Out of the mass of reports produced by A and B, we select at random one

report from each of them. Our chances for each combination of correct and

* iincorrect reports would then be:

* P(A correct and B correct) 0.70 x 0.80 0.56

P(A correct and B wrong) 0.70 x 0.20 0.14

B-5-4

'4~



VB0

P(A wrong and B wrong) = 0.30 x 0.80 = 0.24

! P(A wrong and B wrong) = 0.30 x 0.20 = 0.06

NeXt we calculate the probability that both A and B are right, on the

assumption that they both agree:

P(A correct and B correct, given that they agree)

- 0.56 / (0.56 + 0.06) = 0.903

Thus, there are something better than 9 out of 10 chances that they are

correct, given that they both agree in truth-value.

Although this probability model is very simple, notice that it tells

us a good many things that our intuitions say are correct. For example,

suppose that we have two independent reports which are such that (a) they

tend to confirm each other, and (b) they are both fairly reliable. Then the

probability that they are correct is higher than it would be for either of

them taken separately.

In general, the more independent reports that you have which tend to

confirm one another, the more certain you can be of their truth.

In the same way, notice how disconfirmation lowers the probability of a

report. What is the likelihood that A is true, given that we have received

report B which disconfirms it? Using the same set of numbers as before:
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P(A correct and B wrong, given that they disagree)

- 0.14 / (0.14 + 0.24) = 0.368

The probability that A is correct, then, drops from 0.70 to 0.368, if a

disconfirmeing report B is received, which has a probability of 0.80.

Similarly, suppose that we have received report B first. What happens

when we receive report A, which disconfirms it?

P(B wrong and A correct, given that they disagree)

= 0.24 / (0.24 + 0.14) = 0.632

The probability that B is correct has dropped, then, from 0.80 to 0.632,

when the disconfirming report A is received. While the probability of B has

dropped, it is still likely, since its initial probability (0.80) was quite

high. If additional confirming evidence were received, it would tend to

outweigh the shakier disconfirming report A.

Finally, suppose that we have received both A and B, and that both

agree upon their story. What is the probability that they are both wrong?

P(A wrong and B wrong, given that they agree)

- 0.06 / (0.06 + 0.56) = 0.097

Thus there is some possibility that both reports are wrong, even though

they confirm one another. This probability, 9.7 percent, may be too high to
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permit a critical decision to be made which assumes that they are' cobrect;

the possibility of error is too great. Additional information may be needed.

This very simple probability model, then, gives you some sense of the

way in which uncertainties in various reports can be combined to obtain an

aggregate measure of uncertainty.

Unfortunately, this simple probability model is much too simple for

practical use in aggregating the credibility of reports. It supposes that

each source produces a large number of independent reports, as a bottle fac-

tory might produce bottles. Then it supposes that some of these reports will

randomly be found to be faulty. In point of fact, some events are far more

likely to be reported than other events. Thus some reports are more plausible

than other reports.

When we say that one report is more "plausible," we mean that it is

more likely to be true -- based on our general knowledge of the context in

which it appears.

Suppose that: (1) Soviet aircraft X is a rickety, ancient plane that is

constantly in need of repair, and (2) aircraft Y is a sleek, new machine that

' performs effectively and reliably. Suppose that we receive two reports: (A)

l~ that X is being mothballed, and (b) that Y is being mothballed. Which report,

A
A or B, is more likely to be correct? Obviously, assuming some degree of

rationality on the part of the Soviets, A is more likely to be correct than B;

we say that A is more plausible than B.
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Two factors enter into the evaluation of the uncertainty of a report:

(1) the record of reliability of the source, and (2) the initial plausibility

of the event which it reports. We call this initial plausibility the prior

probability (or a priori probability). It represents your best guess concern-

ing the likelihood of the event before you have received the report.

Bayesian methods are intended specifically for dealing with situations

like this. They represent a straightforward development of Bayes' theorem,

which combines the initial plausibility measure with each piece of additional

information to obtain the probability of a projected event.

The following information is required:

o The initial probability, before any new information is received,

that you assign to the event.

o The probability of receiving a report of this type from this source.

o The probability, given the occurrence of the event, that a report

concerning it from this source would be received.

Bayes' theorem produces, on the basis of this information, the probabil-

ity that the event occurred. In its simplest form, it says:

P(E/R) P(E) x P(R/E) / P(R),
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where P(E/R) is the probability that the event occurred, given that you have

received the report; P(E) is the initial plausibility or prior probability of

the event; P(R/E) is the probability that the report would have been produced,

if the event occurred; and P(R) is the probability of reports from this source.

Notice that the theorem can be applied repeatedly. Each time, as a new

report is considered, the plausibility of an event increases or decreases. In

this way, on the basis of several reports, it becomes possible to assign a

measure of the uncertainty of the event reported.

Bayes' theorem is particularly effective in applications in which deci-

sions are structured and repetitive. Consider for example the identification

of aircraft in a battlefield situation, in which there are (l) several differ-

ent radars and other sensors, which can be used for identifying aircraft, (2)

a definite mix of friendly and hostile aircraft for identification, and (3) a

well-defined logical structure for the combination of reports from several

sensors in such a way as to define the probability of specific aircraft.

Well-defined, repetitive tasks like this occur repeatedly in tactical

situations. You may find that Bayesian methods are also useful in strategic

I intelligence applications, particularly where the tasks are highly structured

and repetitive. They are probably most useful when a computer system is avail-

able to perform the routine computational tasks.

Some of the problems of the Bayesian approach, which make it difficult

to use without computer support, are these:
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o You will have to determine the prior probabilities of all the events

under study. These represent the initial plausibilities of the

events, before current information is used. This task can become

quite onerous when probabilities for a large number of events must

be assessed, or where the events are nonroutine. We can estimate,

on the basis of past experience, the probability that Soviets

will launch a new satellite next month, or that they will initiate

troop maneuvers; but the probability that they will withdraw troops

from Cuba - a nonroutine event - is much more difficult to assess.

" Determining the prior probabilities as inputs into the Bayesian

system may be a time-consuming task. You may feel that they are

too unreliable - that they contain too much guesswork - to make it

worthwhile to subject them to Bayesian processing. Under these

conditions, you may prefer to assess the final probabilities direct-

ly, without using a Bayesian approach.

0 In any case, preparing probability assessments is a difficult task,

if the assessments are to be of value to the consumers. In other

areas, such as tactical intelligence, experiments have shown that

intelligence analysis sometimes guess at the probabilities, give

the same "average" rating to almost all information, or omit the

probability assessments entirely. This suggests that strategic

intelligence producers will also find it difficult to assign de-

tailed prior probabilities.
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The study of Bayesian methods, in spite of these caveats, is neverthe-

less useful in estimative intelligence production, for several reasons:

o It gives a good sense of the meaning of probabilistic information,

and how such information functions in decisions.

o It helps to show how probabilities can be properly combined.

o In particular, it emphasizes the importance of the prior probabili-

ties - the essential background information that must be used in

assessing the plausibility of a report.

Work with statistical methods will, in short, give you a much better

sense of the way in which uncertainty affects and afflicts all knowledge.
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UNIT 6

HINDSIGHT AND SECOND-GUESSING

t Subjective probabilities are most frequently used for reporting the

uncertainty of an estimate. These represent your assessment of the likelihood

that the projected event will occur, or that the numbers will lie within a

given range.

These probabilities will, of course, be as accurate as you can make

them, based on your assessment of all the factors that entered into your

estimate. They are "subjective" or "intuitive" in the sense that each estimate

is based on a different collection of information which, in your opinion, is

relevant to the problem. Your sense of the overall policies and capabilities

of the nation, as well as your detailed knowledge of specific weapon tystems,

enters into your assessment of the probability of an estimate.

Because this assessment is subjective, it is subject to the biases and

distortions that enter into all human judgments. Experiments have shown that

more experienced personnel are less subject to bias than are inexperienced

persons. Specifically, experienced weather forecasters, working in the areas

of their own expertise, did not show the same biases that were shown by college

students in psychology courses, who are most frequently used in experiments

of this type. It will be helpful, nevertheless, to see what some of the

common biases are.
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In this unit, we review several kinds of bias that have been found in

assessments of probabilities. In addition, we explore some of the interest-

ing side effects of these studies. We will find, for example, that some of

the critics of the intelligence community have been more guilty of one type

of bias -- hindsight bias -- than the intelligence producers themselves.

But our main goal will be to learn something about the nature of bias in

subjective judgments of uncertainty.

Humans generally do a poor job of assessing their own uncertainty. They

are far more confident about their judgments than the evidence would warrant.

At other times, they may be inclined to hedge -- to overstate their uncertainty

in an effort to avoid the penalties for error.

We might expect that if people knew something about the common biases

that may occur, they might be able to correct them. Experimentation has

shown, however, that this last expectation remains a rather forlorn hope; there

is no clear evidence that people can correct their errors, even when they

know that errors occur. What is needed is a better understanding of the

estimative process itself; if estimators are skilled at developing estimates,

then they also tend to be better judges of the uncertainty in their estimates.

This study of bias is therefore intended to help you understand the estima-

tive process better -- in the expectation that this understanding will help

* you to assess your own uncertainty a little more accurately.

The first type of bias, hindsight bias or second-guessing, is

particularly interesting, because it represents an error that frequently
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occurs in outside evaluations of estimative intelligence. It is a bias that

is based on the "prediction" of events that have already occurred.

If someone were to ask, "How likely did it seem to you in 1977 that the

Shah of Iran would be overthrown?" You might think back to the evidence that

was available then: massive student protests among Iranian students in this

country, the presence of secret police and the other paraphernalia of

dictatorship, and perhaps other signs of a fragile, rigid regime. With

this information, you certainly should have seen that the Shah was about to

crumble. If you also had the special sources of information that were avail-

able to intelligence officers in 1977, then you certainly should have predicted

the rebellion that was then imminent. Why, then, was it not predicted?

The answer to this question is complex, and it lies at the heart of the

problem of estimative intelligence:

o There is too much information. Intelligence producers are over-

whelmed with data that far exceed their capacity to ingest and

digest them.

o The information that you have is not structured around the specific

events that are to be predicted. While there may have been enough

information to have enabled you to predict the overthrow of the

Shah, for example, you did not have it neatly filed in a drawer

marked "Evidence of forthcoming rebellion in Iran."
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I
o Even if the proper information had been accumulated in time,

there were too many chance factors that might have intervened.

For example, what would have happened to the rebellion if the aging

Khomeni had become violently ill at the critical moment? What if

the Shah had been more conciliatory? And so on, through an

indefinite number of variables.

o Over the long run, intelligence producers try to avoid the "cry

wolf" response that comes when they have predicted dire events too

often -- when the wolf failed to appear. Simply to maintain their

credibility, they have to avoid premature and unnecessary warnings.

Hindsight bias ignores these problems. It is the claim that some-

one could have, and should have, predicted the future far more

accurately than he did. Of the intelligence community, for

example, it says:

o The Pearl Harbor attack should have been predicted more accurately

and effectively, given the vast amount of information in U.S.

hands concerning Japanese plans and naval maneuvers, including

information that was made available after the Japanese codes

were broken.

0 The Soviet invasion of Czechoslovakia should have been predicted.

Specific messages were available which could have revealed Soviet

plans. In addition, careful tracking of the levels of tension
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between the two nations would have shown increasing hostility,

reaching the ignition point at the time of the invasion.

0 The overthrow of the Shah of Iran should have been predicted. It

was generally assumed that the regime was stable, and that the

increasing Westernization of the country had broad support. A

better understanding of the nation's attitudes, together with

specific information concerning anti-Shah movements, would have

shown that this assumption was not warranted.

In general, the reasoning is this: "As we look at the past, we see

that many events could have been predicted on the basis of available informa-

tion. We therefore can attain a relatively high degree of certainty concern-

ing future events. Therefore, predictions of the future should be given a

, high degree of certainty."

Hindsight bias reflects a simplistic view of the past. Since we can

., put together a reasonable scenario that would permit the prediction, say, of

the overthrow of the Shah, this does not mean that we will be able to put

together a scenario for the prediction of other anomalous events in the future.

("Anomalous" is used here in the sense that Thomas Kuhn uses it in The

Structure of Scientific Revolutions: a violation of the laws that make up

the currently accepted world-picture. The world-picture, for Americans in

1977, saw the Shah as an established, stable ruler. His overthrow violated

this picture, and was thus anomalous.)
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This simplistic view of the past has been called "creeping determinism."

It says that there is enough infor-ation available about future events to permit

us to predict them. Thus, the only problem, according to this view, would

be to get more information to the intelligence producer, and to get him to do

his job better. If the deterministic view is correct, then he can predict

future events.

This point of view produces two types of problems for the intelligence

producer:

o First, since it is a plausible viewpoint, it increases the level

of criticism of the intelligence community. It leads to demands for

performance which cannot be met. The most serious result, then, is

a loss of confidence in the work of the intelligence community, and

a tendency to rely on other sources of information -- such as,

hunches, guesswork, and the popular press.

0 o Second, experimental evidence has shown that people tend to

overestimate their own knowledge of the future. When asked to

assess the probability of future events, they frequently assign

too high a probability. Moreover, when the event which they

predicted has occurred, they claim to have been more certain than

they actually were. As they look back on the past, it seems to

them that they had been able to foresee the future, with more

assurance than they claimed at the time.
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In practical terms, it is important to remember that the demand for

more accurate predictions of future events can lead to over-assessments of the

probability to be attached to your estimates. In addition, this type

of criticism tends to focus on anomalous events, which are precisely those

events which are most difficult to predict. (If we take "anomalous" seriously,

they are the events which cannot be predicted at all.) The goal of strategic

intelligence is the identification of the intentions and capabilities of the

nation under study, not the prediction of the unpredictable.

Even without the presence of hindsight bias, however, people tend to

be overconfident about the extent of their own knowledge. A person is

overconfident when he or she gives too high an estimate of the probability

of a projected future event. In quantitative estimates, overconfidence is

reflected in too narrow a spread between the High and the Low estimates.

Research has shown a strong, consistent tendency toward overconfidence,

both among subject-matter experts and among novices, in field situations as

well as in the laboratory:

o Studies of Las Vegas casino patrons showed irrational preferences

for certain bets.

o Studies of bankers and stock market experts in the prediction of

closing prices for stocks showed exaggerated confidence in the" A accuracy of the predictions.

B-6-7

-A&- Ak



o Studies of military intelligence officers predicting a coup d'etat

in a designated country, the shooting down of a reconnaissance plane,

or an arms shipment from one country to another showed overconfi-

dence in their predictions.

"Overconfidence" means that the probabilities that they assigned were

too high. Over the long run, when they assigned a 70 percent probability to

a series of estimates, then 70 percent of those estimates should have been

correct. In fact, the actual percentage of correct estimates was found to

be consistently lower than the percentages which these experts assessed.

This was true of experts in such widely scattered fields as gambling, the

stock market, and military intelligence.

There is no easy cure for overconfidence. All of these experts obvious-

ly had a good deal at stake in the accuracy of their assessments; their

overconfidence was costing them money or prestige. Apparently, they were

unaware of their bias. Thus, the first step toward a cure is to become

aware of the accuracy of your past estimates. A continuing review of your

past work and that of other people working on similar estimates will help

to show where there are areas of overconfidence and underconfidence. I
Such a review will also have a beneficial side effect -- it will help to

locate precisely those factors that contribute to errors in the estimates

themselves.

In addition to problems with overconfidence, there also seems to be

some pressure toward underconfidence -- that is, toward excessive hedging of
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estimates. The motivation for underassessing the probability of your result

is not difficult to locate. Suppose that, instead of saying, "There is an

80 percent chance that you say, "There is a 60 percent chance that..."

This will (a) give you some credit if you're right, and (b) reduce the

penalty if you're wrong. Similarly, you could increase the range from Low

to High, to help insure that the actual figure lies within the range that

you have projected.

More generally, there is a pressure toward conservatism i the produc-

tion of intelligence estimates, which is likely to counteract the general

human tendency toward overconfidence. On the one hand, the go-for-broke

strategy encourages overconfidence: you produce wildly daring estimates in

the hope that one of them will be right, winning you glory and renown

throughout the grateful nation. On the other hand, the don't-cry-wolf

strategy encourages conservatism: if you repeatedly offer exaggerated

assessments, then your credibility drops off sharply. Since these two

tendencies can lead to serious errors in probability assessments, it would

be a good idea to define them more clearly.

According to the go-for-broke strategy, there will be little opportunity

for personal recognition for the person who produces dull, routine estimates.

Even if these estimates are mostly correct, the consumers are scarcely likely

to notice them. To gain that kind of notice, you have to go for broke --

that is, you have to indicate a high degree of confidence in a very striking,

* unexpected event. If you win, then you have gained the kind of recognition

that you were looking for. What happens if you lose? Generally, the person
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that tries this strategy doesn't have all that much to lose. It is a

strategy for the person who likes to gamble for high stakes.

The don't-cry-wolf approach uses the opposite strategy. It says that

you can gain credibility only through a chain of successes, and this means

that you never speculate on the long shots. In practical terms, it means that

probability assessments are kept low, and that the spreads from Low to High

are kept wide. In this way, you are likely to be correct most often.

Both of these approaches place the emphasis in the wrong place. Instead

of asking, What assessment will be of greatest value to the consumer? they

are asking, What will most benefit the producer? But even here, these

strategies are wrong. Clearly, in the long run, both producer and consumer

are benefitted most by assessments which correctly indicate the degree of

uncertainty that is present in an estimate. Such an assessment maximizes the

amount of information transmitted to the consumer. In addition, accurate

assessments of uncertainty will also maximize the credibility of the intelli-

gence producer.
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UNIT 7

FURTHER ERRORS IN ASSESSING AND COMBINING PROBABILITIES

What specific techniques do humans use in dealing with uncertain informa-

tion? In some imaginary world populated entirely by statistical geniuses,

they would proceed like this:

o Define an experimental hypothesis for testing.

0 Define the experimental population for which the hypothesis is to be

tested.

o Employing standard statistical sampling techniques, obtain a repre-

sentative sample of sufficient size and proper composition to

achieve the required level of confidence.
p

0 Under well-defined conditions, perform a controlled experiment as

required to test and validate the hypothesis.

o An so on, through the sequence of techniques developed by the

experimental sciences.

An appropriate experimental design, following something like this se-

quence, should certainly be used in those situations in which available time

and available information make it possible (and where the cost of the tests
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does not exceed the expected value of the result). Unfortunately, estimative

intelligence -- and real life -- rarely finds it possible to carry out the

full sequence of experimental tests. Intelligence estimates face two major

constraints:

o To be effective, estimates must be available for a decision within

strict time limits, which may not permit a review of all available

data.

o The nature of intelligence data collection is such that important

pieces of information may never become available. Other pieces

of information may be misleading or false.

Strategic intelligence thus represents, in somewhat exaggerated form,

the situation that we all face in real life, where we never have enough time

to investigate fully, and where much of the information that we must use is

no more than rumor, hearsay, and fraud.

Humans have been found to use several shortcuts, or heuristics, in

dealing with uncertainties in everyday decisions. These heuristics have a

major virtue: they are fast and efficient. They also have a major vice:

they are prone to errors.

Three frequently-used heuristics have been identified:
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o Judgment by representativeness: a small sample is taken as rep-

resentative of a large population. We judge the characteristics

of a whole group on the basis of acquaintance with just a few of

its members.

0 Judgment by availability: an event is judged to be likely, if it

is easy for us to imagine similar events. If, in our imagination,

we can say, "That's just the sort of thing that would happen,"

then we tend to overestimate the probability that it will happen.

o Judgment by adjustment: when judging the numbers or sizes of things,

we begin with a known value and adjust it upward or downward to

obtain an estimate of the unknown value. In the process, we often

fail to make a large enough adjustment.

Heuristics like these are likely to play a role in estimative intelli-

gence, where the stringent time requirements and the lack of reliable data

make it necessary to use short-cut techniques. In more detail, the role of

these heuristics is this:

Representativeness

Judgment by representativeness will occur when it becomes necessary to

make Judgments concerning a total population on the basis of a small or

nonrepresentative sample.

B-7-3

AM J



Researchers have identified a "law of small numbers," which is a falla-

cious rule by which people tend to make judgments on the basis of a very

small number of samples. For example, if we hear that two Ford Mustangs

have had frequent brake failures, we are likely to generalize to the con-

clusion that all Mustangs are subject to brake failures. But our sample

size is much too small to make this sweeping a generalization.

Because information available to intelligence prducers can be limited

to very small samples, it is important to recognize the high probability of

error in generalizing to larger populations. For example, if you could

obtain information only about the destroyer Bedovy, you might be tempted to

generalize that all four Kildin class destroyers carry 45 mm guns (with some

high probability), when, in fact, the Bedovy is the only one that does so.

Since information concerning Soviet naval vessels is very complete, esti-

mators are not at all likely to make this particular error; but similar

errors are possible wherever the information is skimpy and the time is short.

Availability

Judgment by availability is the tendency to use the information which

is most easily available, but which may not adequately represent the popula-

tion from which it is drawn.

Perhaps the best example of this fallacy was the poll undertaken by the

Literary Digest magazine to determine the outcome of the 1936 American

Presidential election. The poll indicated an overwhelming victory for
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Alfred M. Landon, the Republican nominee, over his opponent, Franklin D.

Roosevelt. The magazine's prediction was, of course, badly mistaken. Its

gross error was due to its use of a telephone survey together with a poll of

its readers to obtain its results, at a time when only the affluent could

afford a private telephone. Since nontelephone households included the

majority of voters, and since the vast majority of these voters favored

Roosevelt, the poll gave grossly misleading results. The magazine relied on

data which were easily available, rather than making the greater effort re-

jquired to obtain data which were representative of the population from which
they were drawn.

Psychological studies have indicated that people use this heuristic to

shade their judgments upward or downward, depending on the ease with which

they can recall similar objects or events. Such factors as familiarity,

recency, and emotional saliency have been identified as affecting recall.

Applying these results to estimative intelligence, we could expect that the

following factors would affect judgments of uncertainty:

o Familiarity. If the estimator is familiar with a particular

weapon system, capability, or other entity, he will be likely to

overestimate its numbers, retention time, or other factors, in

comparison with another system with which he is less familiar.

o Recency. A recent report, article, or briefing on a given Soviet

weapon will tend to increase the importance of that weapon in the

mind of the estimator. As a result, he is likely to overestimate
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the probabilities connected with that weapon, in comparison with

other weapons, which may be equally important but which have been

reviewed less recently.

o Emotional Saliency. We are certainly likely to respond more readily

to the more glamorous and more sophisticated weapons than we are

to the dull, unglamorous ones. As a result, the estimator is

more likely to overestimate the probability that the more glamorous

systems will be developed and deployed, ignoring the factors that

would encourage development of the others.

Proper experimental design, then, requires that you take care to include

data which are less "available" in the sense described here -- to include

information concerning unfamiliar systems, older systems that you may have

forgotten, and less-glamorous systems that you may have overlooked.

Adjustment

Judgment by adjustment is a heuristic in which you begin with an existing

estimate, and raise or lower it in response to new information. This process,

called "anchoring and adjustment," is frequently insufficient to account for

the new data.

This heuristic may have been partially responsible for underestimates of

Soviet ICBM installations during the late 1960's. As Soviet policy changed

in such a way as to dictate rapid expansion of ICBM facilities, U.S. estimates
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remained "anchored" to past estimates, and were not adjusted rapidly enough

to take new Soviet policies into account. The result was a series of under-

estimates. (The underestimates of Soviet ICBMs have been widely publicized

and discussed; this is obviously an oversimplification of the reasons for

them.)

The use of the heuristic assumes the existence of a base rate, or com-

monly accepted level of development, production, deployment, and retirement.

Beginning with this base rate, the estimator makes adjustments upward or

downward to take account of:I
o Current political factors

o Shortages or surpluses of materials

o Difficulties or breakthroughs in production

o Changing economic conditions

o Responses to U.S. and other countermeasures

o Problems in training personnel

o Mechanical and other technological difficulties

o Availability of new technology

o Conservatism of Soviet policy

And any other factors that could influence the qualitative and quantita-

tive projections that are required.

If the experimental evidence can be applied to intelligence estimates,

it tells us that these adjustments will not be sufficient; human beings

7B-7-7



tend to be conservative in their use of the heuristic, retaining a bias in

the direction of earlier estimates.

An alternative approach, then, would be the use of "zero-base" projec-

tions. Rather than beginning with existing estimates, the analyst would

construct a new estimate entirely from scratch. Past projections would be

ignored, and previous trends would not be used. Current information con-

cerning foreign weapon systems would be used, to which information concerning

production and deployment rates would add appropriate numbers. Retirement

rates could then be estimated, and the resulting figure would provide the

final projection.

The essence of the zero-base approach would be its lack of assumptions;

nothing would be taken for granted, and every projection would have to be

justified. The zero-base approach differs from the anchoring-and-adjustment

approach, which required justification only for changes from existing pro-

jections.

The zero-base approach is not recommended here, primarily because there

is no reason to suppose that it would produce improved projections. It is

included simply to show the way in which anchoring-and-adjustment works, and

to suggest a means for avoiding the bias that anchoring-and-adjustment intro-

duces. Essentially, it says: Look carefully at the assumptions that enter

into projections, and make sure that these assumptions can be justified.

B-7-8

-,- x- n f



Another bias which has been widely studied seems almost the opposite

of the anchoring-and-adjustment heuristic. While anchoring-and-adjustment

is conservative, this is an anti-conservative bias, since it is the tendency

to neglect prior information.

"Prior information" is represented by the prior probabilities discussed

earlier in connection with Bayesian methods. It refers to the "base rate,"

or the general information that we have. In weather prediction, this would

be the climatic information that we have. We may know, for example, that on

any given day in August, the probability of a snowstorm in Arlington,

Virginia, is 0.001. If we then received information concerning barometric

pressure and wind direction that could indicate a snowstorm, we would never-

theless be very hesitant about predicting one. We would be hesitant, because

our prior knowledge makes such a storm very unlikely. Bayesian statistical

methods make it possible to state this probability precisely.

Unfortunately, human beings are not always hesitant enough in similar

sorts of prediction, according to several experimental studies. Specific

information takes precedence over the general information that we have.

Another all-pervasive source of bias is the tendency of human beings to

try to make sense out of the information that they have. They look for

causal relationships. " People predict and explain events by invoking
I'

their intuitive theories about underlying causal factors .... In making

predictions, people rely on information perceived to have a causal relation
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to the criterion while disregarding valid but noncausal information." (Icak

Ajzen, "Intuitive Theories of Events and the Effects of Base-Rate Information

on Prediction.")

In other words, we tend to regard an event as more probable when we can

find causal relationships between the event and the data that we have. But

this approach is fallacious, because it ignores the underlying probabilities

of the event which it predicts.

For example, suppose that massive construction is observed in a Soviet

shipyard. It could be hypothesized that the vessel under construction is an

aircraft carrier. But this hypothesis would have to be tested not only

against the question (1) Is this construction appropriate for the building

of an aircraft carrier? but also against the question (2) What is the prob-

ability that the Soviets feel the need for a balanced fleet capable of world-

wide operations, as represented by their Kuril-class aircraft carriers?

In other words, correcting for this source of bias would involve an in-

vestigation of all the factors that might influence the probability of an

estimate, and not merely those which have a causal relationship with it.

This source of bias, like the other sources of error that have been

discussed in the last two units, is intended to suggest an approach to the

detection of potential biases in your own estimates. Some of the errors that

have been observed in experimental situations tend to cancel each other out.

We have noticed that:
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o Overestimation in some situations may be balanced by underestima-

tion in others.

" An overemphasis on the base rate, or on prior probabilities, can be

balanced against a tendency to ignore prior knowledge.

These contrasting sources of bias tend to suggest that there is no simple

advice that can be given to the intelligence producer who wants to eliminate

bias. Instead, your goal should be to review past estimates against later

information to determine where your errors, if any, are most likely to occur.

This review of your past work should not be confused with a test that

you might take to illustrate the meaning of various types of biases. Experi-

mental evidence has not shown that the biases that appear in laboratory tests

are similar to the biases that might occur in actual production of estimates

in your area of specialization.

This continuing review of your past work, together with an awareness

that biases appear in all assessments of probabilities, will assist in

located and reducing the errors in your probability assessments.

A"
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UNIT 8

SCORING RULES

. .. as we move further into the age of scientific achievement, the

complicated machines and scientific detection devices require the greatest

sophistication on the part of the operators and analysts. Without this our

scientifically produced information as well as that furnished by the tools

of espionage would be of little use. For it is the patient analyst who

arranges, ponders, tries out alternate hypotheses and draws conclusions.

What he is bringing to the task is the substantive background, the imagina-

tion and originality of the sound and careful scholar." (Allen Dulles,

The Craft of Intelligence.)

In this manual, we have emphasized the role of subjective probabilities,

based on "intuition" -- a comprehensive understanding of the nation, its

goals, and its capabilities. This approach reflects Allen Dulles' view of

the intelligence producer as a "sound and careful scholar."

L We have also emphasized the view that this ipproach is not to be con-

fused with irresponsible guessing. On the contrary, the characteristic that

links the intelligence producer most closely to the scholar and the scientist

& lis the requirement that they must justify their conclusions. They must be

i . able to make their evidence explicit, showing that it supports their claims.

This requirement holds not only for the intelligence products that you

produce, such as estimates, but also for the assessments of uncertainty that
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are attached to them. When you say that an estimate holds with "70 percent

probability," this assessment should be some'hing that you can defend and

justify. It is not a wild guess, plucked out of the air.

In this unit we will describe scoring rules, which are used for rating

the quality of probability assessments. First, however, we should review

the meaning of these assessments. Before we can rate them for quality, we

ought to know what it is that we are rating.

The notion of a subjective probability can be traced back to the work of

the brilliant young philosopher-mathematician F. P. Ramsey, who in 1926-28

worked out a logic of "partial belief." He noted that our beliefs are

generally not all-or-nothing affairs, and that we frequently believe things

partially -- we believe them in some sense, but we have doubts about them.

Since the time of Plato, philosophers had scorned the kind of knowledge

that was less than completely certain. Then felt that a genuine science, like

mathematics, had to be based upon absolute, unchanging truths. Unfortunately,

this traditional view could not be applied to the real world in which we live,

in which our information is always partial, and in which we can never really

be sure about anything -- at least not in the ultimate, unswerving sense that

Plato demanded. What was needed was some effective way of dealing with our

partial knowledge, consisting of information about which we could have some

doubts.
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Among Ramsey's many contributions to this problem was an effective way

of measuring partial beliefs, which are expressed in terms of the subjective

probabilities that we have been discussing in this-manual. Ramsey's methods

are essentially an operational definition, describing what we mean by a

partial belief or a subjective probability.

Suppose that someone claims that Jerry Ford will be elected President in

1980. On questioning, we find that he is fairly sure of this opinion; but

he recognizes, like any sane person, that he could be wrong. Our job is to

fin' out how strong his conviction really is.

We therefore offer him a choice between bets. Call these bets A and B.

If he chooses A, then he will receive $10 on November 15, 1980, if Ford wins

the Presidential election, and nothing otherwise. If he chooses B, then we

will flip a coin, freshly obtained from the bank, on November 15, 1980, and

will give him $10 if it comes up heads, and nothing otherwise. Which of

these two bets will he choose, A or B?

Clearly, since he stands to gain $10 from one or the other of the bets,

and will lose nothing, he ought to choose one or the other of them. If he

chooses B, then he has a fifty-fifty chance of winning the money. He should

therefore choose A if he thinks that Ford's chances of winning are better

than fifty-fifty, and he should choose B if he thinks that they are worse.

We can continue this process, by offering him additional bets (perhaps

using dice or a roulette wheel rather than a coin), in which the odds are
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60-40, 70-30, and so on. At some point, he should reach a state of indif-

ference, in which he doesn't know which of the two bets he prefers. Suppose

that he can't choose between bet A and a bet in which the odds are 70-30.

Then we can say that his degree of belief in Ford's election is 70 percent.

This figure is the subjective probability that he ascribes to it.

Ramsey and his successors developed and refined this process, with the

goal of obtaining much more accurate discriminations among various degrees

of belief, but the basic idea is clear: we can obtain an objective measure

of a person's beliefs, assigning a definite number to them, by comparing

them with the bets that he is willing to make.

There are, of course, objections to the specific method. Some people

hate to take chances, especially when large sums of money are involved; they

are sometimes called "risk-averse" people. Other people may make mistakes

in evaluating the bets correctly, especially when they are complicated or

obscure. Some people may have moral or esthetic objections to gambling,

while others may enjoy the thrill of betting on a long shot.

But none of the objections really undermines Ramsey's basic point: that

there is a logic of partial belief, which we can treat in a rigorous,

mathematical way. This point constitutes the basis and justification that we

have for our treatment of subjective probabilities throughout this manual.

There are two different senses in which a subjective probability can be

said to be correct:
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0 It can really represent the estimator's internal feelings about a

projected event. If offered a series of bets, like those of

Ramsey's method, this is the percentage or probability that he

would really choose -- not some other.

o It can represent a realistic assessment of the evidence available,

the value of conflicting evidence, general background knowledge, and

his own strengths and weaknesses. In this sense, it represents the

likelihood that the estimate is correct.

We will advocate the second point of view, which says that your proba-

bility assessments are not m subjective. If they were only subjective,

then a wild-eyed fanatic could correctly assess a greater certainty for his

claims than could the careful, scientific investigator. But the opinions Of

the fanatic are worthless. This means that his subjective probabilities are

wrong. And if they are wrong, then there should be some objective way of

measuring them, to tell how much they are wrong.

It is for this purpose that a number of "proper scoring rules" have been

developed. A proper scoring rule is a device for assisting forecasters in

calibrating their probability assessments. An assessment is said to be

Y! "calibrated" when, over a large number of cases in which an n percent prob-

ability has been assessed, approximately n percent of them have been true.

Proper scoring rules have been intensively studied in connection with

weather forecasting, in which predictions are often stated in terms of
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probabilities: "There is a 20 percent chance of rain tonight." Probabilistic

predictions like these are neither completely right nor completely wrong,

unless they are stated as "100 percent" or "0 percent."

Still, some probabilistic predictions are better than others. They are

better when they give high probabilities to the events which actually occur,

and low probabilities to those which do not occur. We need a scoring rule

to measure how much one probabilistic forecast is better than another.

One simple -- and misleading -- scoring rule was used in earlier ap-

praisals (1974-76) of DE projections. This can be called the "hit-or-miss"

scoring rule. It counts the number of times that projections have been

correct (the hits) and compares this number to the number of times that they

have been incorrect (the misses). The result is stated as a percentage:

"You've been wrong 70 percent of the time."

If the hit-or-miss scoring rule were taken seriously, it would have the

effect of pressuring the intelligence producer into hedging his bets by in-

creasing the spread between High and Low estimates. The wider he makes these

spreads, the higher his score. If he says, for example, "By 1984 the Soviets

will have between 0 and 56 Foxtrot submarines," he is fairly certain to be

right -- and to get a high score -- since only 56 Foxtrots were produced.

But this heavily-hedged projection will not be of much help to the intelli-

gence consumer, who really needs a less wide-ranging estimate. The hit-or-

miss scoring rule is thus an improper scoring rule, since it encourages the

estimator to produce a less-useful assessment of uncertainty.
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Another type of improper scoring rule might be called the "direct"

scoring rule. Suppose that you get a score of 70 every time you assess a

probability of 70 percent to an event which later occurs, a score of 80 every

time you assess a probability of 80 percent, and so on. This is a more

plausible scoring rule, because it gives you a higher score when you assess

a higher probability to the actual outcome, and a lower score when you assess

a lower probability.

But the direct scoring rule is also improper, because it encourages the

estimator to falsify his assessments. Specifically, he finds it possible to

raise his score if he "goes for broke" -- that is, if he assigns a 100 per-

cent probability to events that he believes likely, and a 0 percent proba-

bility to events that he believes unlikely, without attempting any of the

finer shades of discrimination.

(To see this, suppose that you have issued 100 estimates, and that 70

percent of them have been correct. Suppose that you have, realistically,

assessed a 70 percent probability for each of them. Using the direct

scoring rule, you would get 70 noints for each of the 70 estimates that were

right, and 30 points for each of the 30 estimates that were wrong (since you

allowed a 30 percent probability for this negative outcome). Then your total

score would be 70 x 70 t 30 x 30 = 5800. Next, suppose that you had chosen

a go-for-broke strategy. Instead of 70 percent, you said that all your

estimates had a 100 percent chance of being right. Only 70 of them were

actually right, however, so that you get a score of 70 x 100 + 30 x 0 7000.
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This is a higher score than the 5800 you got when you made the correct

assessments. Thus the direct scoring rule encourages the estimator to go-

for-broke -- to exaggerate his probability assessments. For this reason, it

is an improper scoring rule.)

The go-for-broke strategy would not be useful to the consumer, since it

would encourage an untoward degree of confidence in the estimates. The con-

sumer needs to know, with somewhat more precision, how likely the prediction

or estimate is. The direct scoring rule is improper, because it encourages

the estimator to produce misleading probability assessments.

A number of "proper" scoring rules have been developed to meet objections

like these. They have the property of maximizing your score when your esti-

mates are properly calibrated. For example, if 75 percent of the DIPP pro-

jections are alleged to fall within the Low-High range, then they are properly

calibrated if and only if 75 percent of them do fall within the stated range.

A proper scoring rule will give you a higher score when you assess probabili-

ties correctly, without encouraging underassessment or overassessment.

One of the simplest of the proper scoring rules is the logarithmic rule;

this is -log (p), where p is the probability that you have assigned to the

event which actually occurred. For example, you claim that there is a 70

percent likelihood that ail Bear F aircraft will be withdrawn by 1980. In

1980, it is found that all Bear Fs have been withdrawn. You then get a score

of -log (0.70) 0.15.
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The log scoring rule gives you a lower numerical score when you are.

right; this means that you aim for the lowest possible score. Suppose that

some Bear Fs are still sighted in operation in July, 1980. You have allowed

only a 30 percent chance (100 - 70) for this possibility. You then get a

score of -log (0.30) = 0.52.

Using the log scoring rule, you get the best possible score when you

assess a probability of 1.00 to an event which actually occurs; this gives

you a score of -log (1.0) = 0. On the other hand, using the same scoring

rule, if you were unwise enough to assess a probability of zero to the

event which actually occurred, you get a score of -log (0) = infinity, which

makes it a very bad score. (The log scoring rule thus reflects that fact

that we should never claim to be absolutely sure of anything.) Other proper

scoring rules are less drastic in their treatment of completely wrong assesss-

ments.

The primary advantage of a proper scoring rule is that it rewards ac-

curate assessments. There is no pressure toward overassessment or under-

assessment -- neither a go-for-broke strategy nor a strategy that relies on

hedging your bets will get as high a score as one which assesses probabilities

correctly.

The reason for including a discussion of scoring rules in this manual

has been to give you a sense of what it means to provide correct probability

assessments. In general -- because of the great variety of products that
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DE produces and because of the different sorts of information that must be

considered for them -- the types of scoring rules that hare been developed

for weather forecasting cannot be easily adapted to intelligence production.

Instead, a more qualitative approach is needed. This suggests that the

most effective way of evaluating past assessments is to review them regularly.

For this purpose, you need extensive notes concerning your reasons for making

a probability assessment -- the methods by which you have justified a particu-

lar assessment, and the assumptions that went into the estimate itself. Then,

when errors are found in an estimate or a probability assessment, the re-

sponse will be qualitative, rather than quantitative. It will be an explana-

tion, in verbal terms, of what assumptions went into the judgment which were

not justified, and of what later events conspired to undermine the accuracy

of your product. This kind of information will be of more value to you, or

to other people who must use your work, than a simple, numerical score.

The important point, however, is that your assessments of uncertainty are

more than a statement of your subjective feelings about the estimate. They

represent your careful assessment of the value of the information that went

into your estimate, the relative value of other information available to you,

and the understanding that you have of the larger context in which the esti-

mate appears.
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~UNIT 9

COMMUNICATING UNCERTAINTY

The final task is the communication to the consumer of the uncertainty

contained in your estimate. Several observations about this task can be

drawn from earlier parts of this manual:

o Numerical forms should be used. This is especially true of those

estimates which will be used in games and simulations, and in for-

mal decision models. But all consumers will benefit from the use

of precise, unequivocal numerical expressions.

0 For consistency with other work in decision analysis and probability

theory, the degree of uncertainty should be expressed as a proba-

bility. It should lie in the range from 0.0 to 1.0, where 0.0

represents your assessment that the event cannot possibly occur,

while 1.0 represents your assessment that the event is completely

certain to occur.

0 Much information is sufficiently well-known that it can, in effect,

be given a rating of 1.0. This does not necessarily indicate that

there is absolute certainty concerning the event, but simply that

it would make no sense in the current context to treat it as doubt-

ful.
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o Several different types of uncertainty may enter into an estimate.

These can include uncertainty concerning the source data, possible

deceptive material, missing information concerning aspects of the

estimate, inclusion of speculative or inferential material, and

possible changes in the political structure of the nation. Because

these differing sources of uncertainty will require different types

of responses from the consumer, it will be desirable to report them

in different ways, rather than combining them all into a single

measure of uncertainty.

o Different dimensions, as well as different forms of reporting, are

required. For example, uncertainty concerning the numbers of air-

craft can be measured along the vertical axis, while uncertainty

concerning the date of retirement of the aircraft can be measured

along the horizontal axis. These will require different formats

when they are reported to the consumer.

Each of these points will be described in more detail in this unit.

In general, DIA has experimented with several different forms for re-

porting uncertainty, ranging from rather vague verbal expressions ("We

believe that . . .") to more precise numerical assessments ("There is a 40

percent probability that ... ") Intelligence consumers have not made ex-

tensive use of these assessments, either ignoring them or taking the best

estimate as though it were an unqualified projection. We believe that the

appropriate response is not so much to change the formats in which uncertainty
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is reported, but to improve the quality of these assessments and thus to make

them more useful to the consumer.

J In other words, while it might be possible to display your probability

assessment in blinking red lights at the top of every report, the consumer

will not pay attention to it unless (a) he thinks that the assessment is

meaningful and correct, and (b) he knows how to make use of it. Your primary

task, then, is to make sure that the probability assessment is meaningful,

correct, and in a form that the consumer can use.

Several steps can be taken to support these goals:

o A uniform numerical method should be used for reporting assessments

of uncertainty. The present use of the phrase "a 70 percent chance"

or "an 80 percent probability" is immediately meaningful and should

be retained. (Purists will object to calling a percentage a "prob-

ability," since probabilities are reported in a range from zero to

one. Since current usage is completely meaningful, however, and

since it can easily be translated into the required form for compu-

tations, there is no reason to discard it.)

o Other forms for reporting uncertainty may also be used. Experi-

mentation has shown that the use of odds sometimes makes more

sense to the nonmathematical reader. For this reason, you should

try using phrases like "a fifty-fifty chance," or "the odds are

six to one," when reporting the uncertainty of an estimate.
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o Finally, the use of probabilities in their normal form is undoubt-

edly meaningful to the consumer. Thus, you can report "a proba-

bility of 0.60" when it makes sense in the context. This form can

be used immediately by the consumer who is working with mathe-

matical models.

The probability of the broad, general assumptions which underlie esti-

mates may be much more difficult to quantify. For example, while you un-

doubtedly have some opinions concerning the likelihood that the Soviets will

honor the SALT II agreements -- if, indeed, they are ever ratified by the

U.S. -- you may not find it appropriate to include this opinion in a DIA

estimate. The role of these general assumptions should nevertheless be made

clear, in such a way that the consuner can, if necessary, insert his own

assessment of the probability to be attached to them.

The most important next step, however, is to provide the basis for in-

creasing the credibility of DE's assessments of uncertainty. There are

several ways in which this goal can be achieved:

o First, if the credibility of DE's past performance is to be main-

tained, there must be some record of that performance. Specific-

ally, there should be an accurate record of the probabilities that

you have assessed for various events, together with records of the

spreads that have been included in the DIPP. These should be

checked against later information to determine how accurate they

have been.
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o While this information undoubtedly exists somewhere in the files,

it is not in a form that permits rapid retrieval and evaluation.

Small parts of the record can be retrieved, to assist in researching

some specified topic, but these do not provide an overall batting

average for the Directorate.

o For this reason, we have recommended the design and development of

an Institutional Memory, which will contain information concerning

past probability assessments, in a form which will permit them to

be checked rapidly. Lacking this facility, it would still be

important to have full information concerning the probability

assessments that are currently being developed, for use in later

documentation of DE's record.

o Second, to assist in developing better probability assessments, you

need to know the rationale behind each assessment. Frequently,

this information is known to the estimator but is lost when he

moves to another assignment. While it would probably be inappropri-

ate to include all of this information in a published estimate,

nevertheless it would be useful if there were, somewhere, a more

complete explanation of the chain of reasoning that led to a par-

ticular assessment.

o For this reason, we have recommended that the Institutional Memory

include information concerning the rationale behind an estimate and

the accompanying assessment of its credibility. This information
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could be included in a file or a set of background papers accom-

panying an estimate. It could be used whenever it was necessary

to review a particular estimate.

0 Third, this information is not likely to be of much value unless it

is used. This means that you should plan to spend at least some

time in looking at past assessments of uncertainty, your own and

others, simply to find those areas in which there was trouble.

Without this kind of feedback, assessments of uncertainty are

likely to remain mere guesses.

Another approach which will contribute to improving the usefulness of

uncertainty assessments will be to attempt to determine, for each assessment,

exactly how the consumer expects to use it. If this information is of no

use at all to the consumer, then it doesn't matter whether you say that there

is a "20 percent probability" or an "80 percent probability;" it doesn't

really make any difference. Consumers have, however, requested this informa-

tion, and the real task is to get it to them in the form that will be most

useful.

For example, in estimates which are to be used in simulations, the

probability assessments should be clearly attached to the estimates in a

form that can be quickly entered into a machine-readable data base.

On the other hand, estimates prepared for briefings cannot rely on

numerical addenda or footnotes to communicate uncertainty to the user.
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Charts and graphs should clearly indicate the areas of uncertainty surrounding

each projected figure.

Further techniques for aggregating and communicating uncertainty are

included in the computer programs, together with the user's manuals, which

accompany the final report for this project. These provide more practice in

the use of the methods described here, together with other suggestions for

communicating uncertainty.

The remainder of this unit will be concerned with specific problems in

determining uncertainty.

You may, of course, be uncertain about the probabilities that you assess;

you may be uncertain about how uncertain you are. And you may be uncertain

about this level of uncertainty, and so on, to any level of meta-uncertainty.

These cascading uncertainties could threaten any system for the measurement

and communication of uncertainty.

The approach suggested earlier, in which you are asked to choose between

bets, in order to clarify your own subjective probabilities, provides the

answer to this difficulty. Even though you may not be sure that you are

choosing the best bet, you are forced to choose some probability or another.

Of course, this reflects the situation that we all face in real life, in

which we have to make choices on the basis of partial evidence.
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In other words, there is no one who is better qualified that you are

to assess the degree of uncertainty in your estimates. You should be aware

of your own biases, your tendencies to overassess or underassess your level

of certainty, you own conservatism or anti-conservatism, and so on. But no

one else can tell you how certain you are about your estimates.

How does missing data affect your assessment of uncertainty? By "missing

data" we mean those pieces of unknown information which would be relevant to

your estimate if they were known. Some missing data are like the missing

pieces in a picture puzzle; they may be clearly identifiable as missing.

Others may he totally unknown to you, like the blank areas in a puzzle about

which you know nothing at all. Still others lie in the future, where human

decisions may reverse or undercut an earlier projection: if a coup d'etat

were to overthrow the current Chinese regime and re-install the radical

policies of Mao Tse-tung, this could have a pervasive effect upon the Chinese

military posture. But coups d'etat are difficult to predict, and the

specific directions to be taken by a new government are even more difficult

to prophesy; this is undoubtedly the reason that such cataclysmic events are

explicitly excluded from DE's projections.

Your general understanding of the nation helps to provide a context

which will limit the effect of missing data. Like the partially-completed

picture puzzle, it provides a general outline of the policies and capabilities

of a potential adversary. While you may not know the details of a specific

meeting in the Kremlin, you can at least gain some idea of what would happen

at such a meeting, based on your general knowledge of Soviet attitudes,
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combined with all the information that you do have concerning Soviet activi-

ties before and after the meeting.

The scientific method requires that you account for all the available

data within the context of a general hypothesis concerning the phenomena that

you wish to investigate. As new data are obtained, they may tend to verify

your tentative hypothesis, or they may lead you to modify or reject it.. The

role of missing data, then, is to increase the uncertainty present in your

general model: if all data were missing, uncertainty would be total, and if

no data were missing, then there would be no uncertainty (or at least no

uncertainty concerning current goals and capabilities of the nation; data

concerning future events may be unobtainable in principle).

Another source of uncertainty in the initial data may derive from errors

in the order of battle (OB), which serves as a base line for projections.

This is a serious problem, since it means that you cannot know the true

level of forces in a foreign nation, particularly in China, and as a result

you cannot build projections upon a firm base of knowledge. In addition,

errors in the OB may make it difficult to determine whether your earlier pro-

jections have been in error; the error may be in the OB figure, rather than

in your projection. Moreover, when past figures (e.g., for 1971) are revised

(e.g., in 1974), there is no assurance that the revision makes the newly

revised figures more accurate. in fact, the revision may simply be the

result of smoothing a trend line in one plausible direction or the other.

Another source of changes in the OB may be the use of a more effective col-

lection system. Suppose, for example, that there is a sharp increase in ICBM
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figures from 1971 to 1972; this may not mean that forces were significantly

increased, but rather that satellite cameras were greatly improved at that

time. As a result, the accuracy of earlier figures may be thrown into doubt.

The computer programs that accompany this report provide an approach to

the assessment of uncertainty in the OB figures. Specifically, they show

how to measure the variance in these figures, and the ways in which it affects

your assessments of the probability of later estimates.

Another source of uncertainty, conscious deception by a potential

adversary, afflicts all forms of strategic intelligence. Even allied nations

may habitually provide misleading figures concerning their capabilities.

You are aware of these deceptions and may revise your projections

toward more realistic numbers than those claimed by foreign nations. In

some instances, there is a more difficult problem, when military planning

is performed badly, and the nation has no clearly identified military goals

or policies (perhaps because of internal political conflict). Under these

conditions, your task is to develop realistic projections based on whatever

data you can get.

In the final unit of this manual, this problem will be re-attacked at

a more global level.
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UNIT 10

CONCLUSION

Your estimates are based on your comprehensive understanding of the

nation. Every factor which might influence the development of a weapon

system, military action, or capability must be taken into consideration -- the

national economy, domestic and international policy and goals, the location

and capacity of production facilities, natural resources located within the

nation or available through its allies, technological capabilities and the

output of research laboratories, areas which are receiving special attention

in research, the power base of the current regime and the likelihood that it

will remain stable, the organization and leadership of the armed forces,

military policies which have become traditional -- in short, many aspects

which, together, form a "model," or rational intellectual picture, of the

nation as a whole.

With a clearly-defined model of the nation, it is possible to develop

reasonable estimates of its present and future capabilities in specific areas.

For example, if the estimator understands the importance of the five-year

plans for Soviet resource development, and if he understands that the Soviets

are rather slower than the Americans in disposing of obsolescent equipment,

he can make some reasonable estimates of the dates by which a given weapon

system will be replaced.

A clearly-defined and correct model of Soviet intentions and capabilities

provides a basis for dealing with errors, deception, and missing data. The
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deception itself fits into the pattern of overall Soviet strategy, which

provides a rationale for the deceptive maneuver. Within obvious limits --

the model itself must be tested against reality -- the use of a comprehensive

model provides a defense against deception.

Deception does not merely introduce an element of uncertainty into the

estimative process. The attempted deception must be motivated, and valuable

information may be derived from the most deceptive material, if the under-

lying motive can be correctly identified. For example, two Soviet political

scientists have prepared an article for a recent issue of Fortune magazine,

which attempts to justify the USSR's massive expenditures for armaments

within the context of peaceful Soviet intentions. The U.S. reader will not,

of course, take these protestations at face value. Valuable information can

nevertheless be obtained concerning Soviet intentions if we succeed in inter-

preting them correctly, since the article surely indicates what the Soviets

want Americans to believe.

More generally, the art of propaganda analysis attempts to derive infor-

mation of value from deceptive material, not merely to reject it as false.

In practical terms, this means that you formulate a generalized hypothesis

concerning the goals of the nation. This hypothesis provides you with a

context in which to interpret the specific information that you receive,

including erroneous and deceptive information. The general hypothesis must,

of course, be reviewed frequently against available, well-documented in:erma-

tion, lest it become a form of paranoia -- in which assumptions are never
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really tested. Nevertheless, it is this general viewpoint that helps to

provide you with a context in which to interpret data of dubious value.

There is, in addition, a "paradox" of intelligence which has frequently

been described. It is more apparent in tactical and current intelligence than

in estimative intelligence, but it appears in all intelligence work to some

degree. In one version, it says, "If you're right, then events will prove

you wrong." In less paradoxical form, it simply calls attention to the fact

that the goal of all U.S. intelligence is to provide information which will

assist in determining U.S. policies and actions. In the dynamic context of

world events, this means that the U.S. responds in such a way as to counteract

or avoid the projected threat. The foreign power therefore must abandon or

redirect its effort, and the threatened action does not take place. Since

the threat does not materialize, the intelligence report was "wrong."

Such a sequence is not, of course, a paradox in any real sense. It

serves primarily to illustrate a point that we have repeated several times:

that the goal of intelligence is not to prophesy the future, but to determine

the plans and capabilities of a nation. For example, if you were to project

the development of a substantial Soviet ICBM capability, the U.S. should be

expected to respond in such a way as to reduce or eliminate the threat that

the ICBMs present. If the U.S. does successfully develop an effective

counterforce, this could lead the Soviets to modify or abandon their ICBM

development. If they were to do so, then your original projection would be

"wrong." The Soviets would not have the ICBM force that you projected.
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But in any reasonable sense, of course, the original projection was

"right." The Soviets did indeed plan to develop an !CBM capability, but

thanks to your timely projection and the U.S. response, they were forced to

change their plans. You were correct in identifying the original Soviet

intentions. Unfortunately, the format in which the projections are made

does not clearly indicate that they represent intentions and capabilities;

instead, they appear to represent firm predictions of the future. Thus, in

an evaluation of the quality of the projections, they are judged "wrong."

The dynamic character of the world situation in which estimative intelli-

gence must work therefore creates an irremovable source of uncertainty.

In summary, several points have been emphasized in this manual:

o DE must meet with other groups and justify estimates, with the

eventual goal of presenting a consensus estimate for the intelli-

gence community. This requires that estimates be defensible,

that appropriate justification be available to support them.

o Justification takes place within the context of a comprehensive

model of the nation under study, composed of defensible hypotheses

concerning national goals, military and industrial capabilities,

social structure, and other factors which might contribute to its

military posture. A thorough understanding of all relevant char-

acteristics of the nation is necessary to produce a justifiable

projection concerning specific military developments.
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0 Projections are intended to represent verified scientific hypotheses

concerning development and deployment of military capabilities,

based on a general model of the nation, together with vL;erved data

concerning the specific capability.

o Uncertainty enters into the projection process in many ways, in-

cluding missing data, conscious deception, errors in the models

employed, etc.

0 o It is important to communicate this uncertainty to intelligence

consumers, who must know the degree of uncertainty in a projection

in order to make reasonable use of it.

I I

o Attempts to communicate uncertainty have not been successful, since !

little use is made of any of the proposed measures of uncertainty.

In addition, the need for calibration (validation) of measures of

uncertainty has been n.1,'.ected.

The primary goal of thi, manual has been to suggest some effective means

of dealing with the problem of assessing uncertainty correctly, and of com-

municating this uncertainty to the intelligence consumer.

J
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APPENDIX C

COMPUTER-BASED SYSTEMS FOR AGGREGATING UNCERTAINTIES

This appendix will include descriptions of computer-based systems for the

aggregation of measures of uncertainty. They represent successively more

sophisticated developments of a basically Bayesian approach.

The systems chosen for inclusion in this section were designed by

Dr. Edward R. Hogan and Dr. John F. Lemmer of our staff; the descriptions

have been adapted here to the specific task of aggregating uncertainties in

strategic intelligence.

C.l. INTRODUCTION

In the production of strategic intelligence, there will be a number of

sources of information available, including reports from the same source over

a period of time. To facilitate exposition, we will refer to all pieces of

information as "reports," regardless of the specific format or source. Some

of these reports can be taken as completely accurate, beyond all reasonable

doubt; a verified engineering report on a piece of captured Soviet equipment

might qualify as this kind of information. Other reports will be doubtful,

inaccurate, or subject to confirmation in varying degrees; unverified infor-

mation obtained from prisoners, defectors, or casual tourists would fit this

category. Since some of these reports will be wrong part of the time, it is

desirable to combine the information from several reports in such a way that
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a higher level of confidence may be obtained from the pooled data than from

the independent responses.

We will consider several mathematical models that perform this function.

In all cases, we will assume that the reports from the various sources are

independent. We do this to make the model tractable. Of course, not all

reports will actually be independent. For example, several prisoners may

have been briefed prior to capture concerning the appropriate responses to

make under interrogation. In this instance, their stories cannot be taken as

confirming one another, since they are all essentially the same story, told

by various persons. In such cases, the actual levels of confidence will be

lower than those given by all of the models. In this sense, the first three

models will tend to be optimistic. In Subsection C.6., another approach is

described which does not require the assumption of independence.

In evaluating the worth of the various methods, including those used in

Subsection C.6., the degree of confidence or uncertainty of the projection is

important, of course, but so is the speed with which the projection can be

produced. While the time factor for estimative intelligence is not as criti-

cal as that for current intelligence, it is nevertheless necessary to pro-

duce estimates in a timely fashion, to permit appropriate responses by intel-

ligence consumers. Of equal importance is the cost of the estimate; with

limited resources available, the comparative costs of various techniques

must be taken into consideration. Thus, a system which made modest demands

upon the computing system would be preferable to one which required very ex-

tensive computer resources.

C-2
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The Bayesian approach to be described here uses the prior probabilities

(or a priori probabilities) of the various eve±.ks and developments for which

estimates are made. These are the probabilities that the intelligence pro-

ducer attaches to a specific event before receiving or reading a report;

Bayesian techniques tell us how much those probabilities must be changed when

new information is taken into consideration. It is also important to use a

method which will take into account the fact that an error in determining

some estimates is more costly than an error in determining others. This in-

formation is essential in determining the degree of effort to be expended to

achieve a given level of confidence in an estimate. (In practice, however, it

may be necessary to assume that all estimates are equally valuable.)

C.2. CLASSICAL BAYES DECISION MODEL

Classical Bayesian decision theory assumes that there exist n possible

states of nature denoted by 019 . These are assumed to be exhaus-n

tive and mutually exclusive. In terms of intelligence projections, these

could be possible types of missiles selected for defense of an urban area

during the next ten years. The specific typology would depend on the break-

down used for reports and projections. In particular, possible classifica-

tions might include: "all others," "no missiles used for this purpose," and

so on (Figure C.1.).

4 To each possible state of nature, as identified by the analyst, there

corresponds an action, which will be denoted by al, . . ., am. For the
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intelligence estimator, each action is simply the identification of a future

state of nature; for this reason, every a. corresponds to one of the 6., and

consists simply of the action of stating that the state of nature will be 0.
j

on some future date. Thus, in our application, each of the a. will correspond
1

to one and only one of the 0..
f]

Bayesian theory also defines a loss function L(0i, a.) that gives a

quantitative measure of taking action a. when the true state of nature is .

This is essentially the cost to the user of each estimate -- the cost or loss

will be positive, in general, when the estimate is wrong, and will be negative

(representing a gain) when the estimate is right. The introduction of a loss

function, while it is a standard component of Bayesian analysis, is rather

interesting in connection with intelligence estimates. It says, briefly, that

you should know how valuable this information is to the user. If it has no

value--that is, if it doesn't matter whether the projection is right or

wrong, in terms of gain or loss for the user--then it doesn't much matter

what figures are included in a projection. The more valuable the projection

is for the user, the more care should be expended in collecting information.

The Bayesian approach presupposes that some estimate of the prior pro-

babilities is available. In general, these estimates would come from prior

probabilities would consist of earlier estimates of the probability that each

type of missile system would be deployed in the given location at the speci-

fied date. This determination may be expressed as a probability distribution

and is denoted by r (e).
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We will denote the various reports which are to be used to update the

probabilities by xl, . . x , and the k-tuple (xl, . . , xk ) by X or Xk.

Each report xi will correspond to one of the states of nature, 0. (That is,

each report tells you that a particular missile system is to be deployed; or,

more generally, it says that a particular situation will obtain.) By prior

testing, estimation, or a mathematical model, the probabilities of the form:

P(xi  j) = Prob {report says that xi Igiven that the true situation

is 0.

I]
may be obtained. From the above, we may calculate the probabilities P(xit

xk ej i l P(xiEj1)

prob (reports xl, . . , xk given that the true state of nature is e.). The

equation holds if we assume that the various reports are independent.

For a fixed 0. we define the risk function:

~R(C, d) = EC) WLO, d (X)),

where d X) is the decision function, a statistic that takes values in {al,

, a }, and the expectation, E, is taken with respect to the distributionm

of X.

Bayes' theorem now provides us with a means of going from the prior pro-

babilities, using the conditional probabilities, to obtain the posterior

probabilities -- that is, the probabilities of each of the possible states of
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nature, given the reports that you have about them:

I

Tr(e.) P(x .. xk1 ej

E. ,(el, . . . . xk  0i
k ie

i=l

P (O X).

post j

Given the prior distribution (0), we define the Bayes Risk function to

be:

R(T, d) = E R(O, d).

Your task now is to decide which projection to make, using a decision I
rule d* that minimizes the Bayes risk.

If we examine each of the conditional risks,

nR(a. I) =l ppo (8ilX) L (8i , aj

then the decision rule that will minimize the expected loss is the rule

that chooses the action that gives minimum conditional risk. Thus if

R(aj IX) = min R(aiJ X),

for 1< i<m,
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then the decision rule d*(X) a.. In the event of a tie, any convenient tie-

breaking procedure may be used.

The Bayesian approach is designed to be used iteratively. When you have,

calculated a set of posterior probabilities, these may be used as the prior

probabilities with a new set of reports, and a new computation. In practical

terms, this means that with every new set of estimates, the probabilities

attached to the old estimates are combined, using Bayes' theorem, with a new

set of reports, to obtain the new probability estimates. Over a period of

time, the probability estimates will tend more and more to approach the actual

probabilities to be attached to each potential weapon system development.

This is an essential feature of the Bayesian approach: regardless of the

initial estimated probability distribution, new information will bring the

probability values closer and closer to the actual values as more reports are

incorporated in the estimate. The trade-off, of course, is that the estimates

become more costly and less timely as more reports are required.

C.2.1. Confidence Level

Our purpose here is to evaluate the expected probability that a given set

of reports will produce the correct combined estimate. This will provide a

measure of the aggregated uncertainty of the estimate.

As noted above, there is a unique action associated with each state of

nature. In our application, this action is simply to state that a particular

state of nature, rti, will occur. For example, your action might be to

say, "Fifty SS-20 missiles will be deployed by 1985." The state of nature is

C-8
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the Soviet intention to deploy 50 SS-20 missiles; the action is your projec-

tion that they will do so or that they intend to do so.

To simplify computational form, we will assign an action a. to each
]

state of nature e j. Suppose, temporarily, that we assume that some projec-

tion must be made; we omit the possibility that "no decision" can be one of our

possible actions, al, . . . , am. It will be useful to calculate our expec-

ted probability of making a correct decision with any combination of reports.

This will simply be:

P (projection is correct)

n

= Z 7(T ) [3(d (x) aJ oJ]

n

jl j Pcombined (a j ).
projection

where

P (ajl0.o

combined l
projection

E P (d (X) a 1i),j
X

and where the sum is taken over all possible X's.

-



Now suppose that we wish to extend the above formula to the case in

which an action "no choice possible" is allowed, and where this action is

denoted by an+ I. Then we wish to determine:

P (projection is correct given that choice was made)

P (choice was made and is correct)
- P (choice was made)

n n

E C. Pproj.
izl j=l (aj 18

ntl n

jz1 R=1 E k P proj. (ajI0k

In a similar manner, we can calculate the confidence level for any sub-

set of the total set of weapon systems. For example,

P (projection is correct for IRBM)

= P (actual installation is IRBMJ projection is for IRBM)

P (actual installation is IRBM and projection is correct)
= P (projection is for IRBM)

C-10
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n n

EJ 2
Y Ei pro]. alI)

i=l j=l

i is IRBM j is IRBM

n n

Ekpo (a.j0k)

j=l k-i

j is IRBM

C.2.2. Example

We will compute the confidence level of a projection made up of several

reports concerning missile installations to be installed by 1985 around a

hypothetical Soviet city. Two sources of information are available concern-

ing Soviet plans for the projected missile installation, which we will simply

call Source 1 and Source 2.

The probability matricus indicate our estimates, based on prior exper-

ience with similar sources, that Sources I and 2 are correct or incorrect.

The upper left-hand entry is the probability that Source 1 or 2 will report

an IRBM installation, given that the actual Soviet plan calls for IRBM; the

upper right-hand entry is the probability that the source will report

(erroneously) that the installation will include IRBM when Soviet plans call

for non-IRBM; and so on.

1 .



Source 1 Source 2

6 . 6.
1 1

IRBM NON-DBM IRBM NON-IRBM

.81 0.10 IRBM 0.95

a.]

0.11 0.90 NON-IRBM 0.05 0.96

The loss matrix, indicating the cost to the U.S. of an incorrect identifica-

tion and the corresponding gain, or negative loss, for a correct identifica-

tion could, for this hypothetical example, be:

0.

IRBM NON- I RBM

IRBM

a. -1

NON-IRBM 0. 5-

The entries in this matrix are values for L(O., a.). Thus, the relative cost

of a projection which states that the missiles are not IRBM, when they

actually are IRBM (according to Soviet plans), is 0.5. The costs need not

represent actual dollar amounts, but simply the relative loss or gain (where

ne",ative values represent gains).
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You assume also, on the basis of general statistical information con-

cerning Soviet plans, that 1 out of every 5 Soviet missile installations is

IRBM. Thus, your prior probability figure tells you that any missile instal-

lation selected at random has 1 chance out of 5, or a probability of 0.20, of

being an IRBM installation, and a probability of 0.80 of being non-IRBM.

We let X (xi, x2), where x is the identification provided by Source 1,

and x2 is the identification provided by Source 2. Since we are assuming that

Source 1 is independent of Source 2, letting I abbreviate IRBM, and NI abbre-

viate non-IRBM, we have:

P(I'III) = P1 (111) P2 
(111 ) = .89 x .95 = .8455, which is the probability

that both sources will identify the proposed installation as IRBM, given that

the Soviets actually plan to deploy IPBMs at this site. Similarly, the other

combined probabilities can be calculated. (E.g.: What is the probability

that the first source will report IRBM and the second will report non-IRBM,

given that the Soviets actually plan a non-IRBM deployment? Answer: 0.10 x

0.96 = 0.096.)

These results can be summarized in the following table.

Source P(X/O.
Report,-I

X IRBY, 1tI1B-TKM pIob. of X

(0,I) 0.8w 0.0014 .845'x .2 + .O'-x .: .1723

(1,NI) 0. 0 4. 0,4, .0q['/

(NI, I) 0. 1045 O. t' . O 7

(NI ,NI ) 0. 055 0.868 .6 3

I(O) 0.? 0.8
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Now the posterior probabilities are calculated using Bayes' theorem, e.g.:

I)= 0.2 x 0.8455 - 0.98143
P (III, 1) .1723

Summarizing, you get the following values of P (OIX):

|e

X IRBM NON-IRBM

(1,1) 0.98143 0.01857

(I,NI) 0.10385 0.89615

(NT,I) 0.42052 0.57948

(NI,NI) 0.00159 0.99841

You now need to find d(X), the decision to be made concerning the projec-

tion, for each of the four possibilities. Using the risk function:

n

P(OiIX) L (0i, aj)
R (ajiX) : i il

You obtain:
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R(a. , X)I
X

I NI d(X)

(1,1) -.96286 .47215 1

(INI) .7923 -.84423 N'I

f(NI,I) .15898 -.36922 NI

(NI,NI) .99682 -.99762 NI

The decision function, in the right hand column, simply reflects your choice

of the outcome that carries the smallest risk, or the largest expected gain

(negative risk).

Using this information for the combined sources of information you get:

P (III) 0.8455

P (NIJI) = 0.1545

P (IINI) = 0.004

P (NIINI) 0.996

Thus the overall confidence level is

C = 0.2 x 0.8455 + 0.8 x 0.996 = 0.9659

This represents the confidence you obtain through the use of two sources

of information, rather than one. Your confidence in either of the sources of

information separatelv is:

C (Source 1) = 0.98 x 0.2 + 0.90 x 0.8 = 0.898

C (Source 2) = 0.95 x 0.2 + 0.96 x 0.8 = 0.958

C-15
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C.3. SEQUENTIAL BAYES DECISION MODEL

The preceding model may be adequate under some conditions, especially

when the number of sources of information is fairly small, say around six,

and they are similar in character -- if, for example, they are all reports

based on prisoner interrogations. That is, if you can expect to be getting

information from all of a small number of sources at approximately the same

time, then the classical Bayes model should be ideal. But because of their

combinatorial nature, the Bayes rules become computationally long and expen-

sive if reports from many varied sources are combined.

In addition, the preceding model ignores one of the fundamental rules of

intelligence production: that intelligence rapidly loses its value through

time, and that intelligence is valueless if it does not arrive soon enough

for timely action. If you wait until you are absolutely certain of a

possible event, then it will be too late for anyone to take action to pre-

vent that event. On the other hand, if you act prematurely, before you are

sufficiently sure of the enemy's intentions, you are subject to disasters of

a different nature. You must achieve the appropriate balance between too-

hasty and too-tardy action. The methods to be described in this subsection

are intended to identify that point of balance.

The following model takes into account the cost of using additional

sources of information. It also allows for repeated use of the same source

of information over a period of time (Figure C.2.).
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Suppose that you now take intelligence reports X (xi, x2 , .)

dequentially, and, as in the preceding model, the distribution for each finite

segment X = (xl .. , x) is assumed to be discrete and known, given ann

state of nature 6 Since you are assuming independence of the reports,

.nXl . , XnlO j)=

fn (lxj l' "n 1n(0I~

You may now assume, quite reasonably, that there is a cost, or many costs,

associated with obtaining each report. Determining the precise cost of re-

ports is, of course, a very serious problem. However, in the context of

estimative intelligence, an overriding cost is the amount of time spent in

obtaining the report and the consequent delay in producing the estimate (to-

gether with the delay which is introduced in the production of other esti-

mates). It might be possible, and desirable, to devise a fairly complex cost

function based on the anticipated time required to obtain a particular report,

together with the time necessary to combine that report with other reports.

However, the time required to obtain n reports should be roughly proportional

to n. That is, we can devise a rough cost function by defining

C(X ) cost of obtaining X = Knn n

where K is a constant representing the time required to obtain and integrate

one report.
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We will also assume that it is possible to obtain only a finite number

of reports, J. In other words, your sequential decision problem will be trun-

cated at J. Again, J may be estimated simply by dividing the time available

for preparation of the estimate by the amount of time required for obtaining

and integrating each report. In any case, there will come a time at which

you must produce an estimate, if the estimate is to be useful to the consumer;

and J is a measure of the amount of information that can be obtained and

digested within that time limit.

We will define a stopping rule s to determine when to stop sampling

(obtaining reports) and a terminal decision rule d to determine what action

to take when you have stopped sampling. The terminal decision rule may be

viewed as a vector of decision rules, one for each sample size:

d = [ 0 , d1 (x1 ), d2 (xI, x2), . . . ],

where d is one of the available actions and dn (x, . . Xn ) assigns an

action to the vector or sequence of reports (xI , . . ., xn

A stopping rule is determined by a family of functions of the form

S1(Xl), 2 (Xl' X2)'. "

where
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0, if d tells you to take the first observation

0r
, if d tells you to take no observations

and

if d says take an additional observation,

n given xn

i, if d says take no further observations,

given x nn

The functions k completely determine the point at which to stop, for

any given stream of information. If the stopping rule is given in another

form, the functions 0k may always be determined from the formulation.

Dr. Hogan's original study provided a derivation of the stopping rule,

which is somewhat complex and will be omitted here. Essentially, a stopping

rule will determine that point at which it would be more costly -- in terms

of expected loss -- to continue gathering information, than to stop. For

example, if your current information indicates, with a 60 percent probability,

that a given weapon system will be deployed, then it may not be worth your

time to continue collecting reports which might raise this probability to

70 percent. The need to produce a timely projection, the cost of obtaining

additional reports, and the need to work on other projections are among the

factors that would influence your decision to stop collecting information. You

therefore issue the projection with the 60 percent probability attached to it.
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As the stopping rule is formulated and combined with a decision rule,

indicating the projection to be made, it minimizes the Bayes risk, B (s,d),

over all decision and stopping rules.

This model, the sequential Bayes decision model, allows for a tradeoff

between timeliness and confidence in a projection. But the model is even

more complex computationally than the first model. It might also be extremely

difficult to devise a cost function that would be general enough to fit a

wide enough set of circumstances to make the model useful. In addition, it

might be difficult or costly to determine some of the other parameters, such

as the truncation point, at which no further reports will be included.

The sequential model is quite sensitive to the cost function. In the

example given in subsection C.2.2., if the cost of new information is high

enough, an estimator might simply decide to issue a projection stating that

the installation is non-IRBM, given that 80 percent of all Soviet missile

installations are non-IRBM. (This would be comparable to issuing a weather

forecast in Rome, New York, stating that there will be snow on January 14,

based only on the forecaster's prior knowledge that 80 percent of the days

in Rome in January are snowy.) For a randomly selected missile installation,

the estimator would have an 80 percent chance of being right.
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C.4. A MODIFIED SEQUENTIAL DECISION MODEL

Unlike the first model, which takes reports from all available sources

of information before making a decision as to the proper projection, the

second model uses only enough reports to assure a given level of confidence

in the projection (with the additional requirement that the number of avail-

able reports is limited to some finite number, J).

If an estimator were required only to track and report a single weapon

system, then it might be possible to use a fixed number of different sources

of information, which would provide periodic updates, and which could be

combined using the first Bayes decision model, to obtain projections as re-

quired. Since the appropriate level of confidence for each source of infor-

mation could be obtained over time, the overall level of confidence could be

readily computed, using Bayes' theorem. A minimum of time would be required

to make the best possible decision -- that is, to issue a projection with the

highest possible level of confidence. On the other hand, if reports became

available at different times, with varying levels of confidence; if there

were a priority on using a small number of reports (in order to reduce the

cost of obtaining them); and if the computations were not prohibitively long;

then the second model might best fit the problem.

But the actual production of intelligence estimates is not as orderly as

these models suggest. Many different types of projections must be produced to

meet the requirements of consumers, and the required reports may not be avail-

A1
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able when they are needed. In such a situation, the first model may be criti-

*cally costly, in that it requires a complete set of reports before it can pro-

duce a projection; in such a situation, the projection may not be completed

*in time to be of value to the consumer. And since the second model may pctr.-

tially require even more computations than the first, the second model may

take too long to arrive at a decision.

The critical problem with the second model is its lack of flexibility.

Although the preliminary computations are lengthy, they need to be done only

once. Then the algorithm is implemented by a simple lookup table. However,

all of the required reports must be available for the lookup method to func-

tion. Such a situation is not likely in the actual context in which estimates

are produced. The heterogeneous nature of the reports used in estimative

intelligence means that some sources of information may be unavailable in

time to be of use. Under such circumstances, either tables would have to be

available to account for all possibilities, or recalculations would be neces-

sary, perhaps several times, during the production of an estimate. The classi-

cal Bayesian sequential model would then become unwieldy computationally.

The following sequential statistical technique may be found desirable for

actual estimates, under the conditions of heavy personnel loading and fixed

deadlines which normally obtain (Figure C.3.). Using this approach, more

than one projection can be produced, and no more reports need to be utilized

than will be necessary to produce a satisfactory projection.
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We will again use a Bayesian approach and assume nonparametric probabil-

ity distributions. Suppose that a request for a projection arrives, and that

your current information indicates several possible projections -- that is,

several types of weapon systems which could be developed during the indicated

time span -- of m possible types, TI. . . Tm, with the following discrete

probability distribution:

f (S IT.) probability (of having report S lgiven that actual
1 l

system is T.)

The m possible classifications of weapon systems would be predetermined types

that had been assessed to be likely or possible for the required time period.

Of course, as in the previous models, there are many other possible calssifica-

tions suitable for use with this model; for example, a classification of "sys-

tem unknown" could be added, or generic classifications, like ICBM, IRBM, etc.,

could be used.

Generally, one of the fI(SIJTj)'s would be larger than 0.5 and consider-

ably larger tha-i most of the other f1(SiITi)'s. Ctherwise the report would

represent a source of questionable value. Indeed, many of the fl(SllTi)'s

should be equal to ze -- indicating that there is no likelihood that a

source of information would make this particular error. The required pro-

babilities may be estimated as indicated in the discussion of the first model.



Let the prior distribution be denoted by no(Ti). Then, using Bayes'

theorem, we can calculate the posterior distribution:

iT0(Ti f 1 (SI1 T i)

h1 (T i.S I )

m
vTO(Tk) fl(SlITk)

k=l

For each weapon system, or other category, predetermined probability lev-

els, A. and B., would be selected to satisfy the following conditions: If
1 1

hI(Ti S,)< Ai, it would be sufficiently improbable that the system would fall

into category Ti; hence, that category could be eliminated from further con-

sideration. On the other hand, if hl(TijSl)>Bi, then a sufficiently confident

determination would have been made, and the correct weapon system would be con-

sidered identified.

If A<hi SI ) Bi, then the h.(Ti S )'s would serve as the new prior dis-
1 2.1 11

tribution and an additional report would be used which would give probabilities

Sf2 ( S2 IT,), . , f2(S2 Tm). These would be combined with the new prior dis-

tribution using Bayes' theorem, and the above decision algorithm would be ap-

plied again. This procedure could be continued until an identification could

be determined. If there is a deadiine for production of the estimate, and no

decision is reached by the time that this deadline is immanent, it would be

natural to use the classical Bayes decision algorithm to force a decision.



I

Since all of the necessary probabilities would have been calculated, this

model could be easily implemented.

In this context it is interesting to observe that if the posterior dis-

tribution is used as a prior distribution for a subsequent computation, the

resulting new posterior distribution based on the outcome of the new computa-

tion is the same as the posterior distribution that would have been obtained

based on the combined data from all the observations and the initial prior dis-

tribution.

Thus if we let f(SI,SITj) f (S T )f (S Tj) (since we are assuming

independence, which is not a necessary condition for this computation), then

h(T )fI(S IT.)
hl1(Tjl SI )  0 ]

m
Z n 0 (T,)f 1 (Sl Tk)
k=l0 1

Now, using h as a prior distribution combined with the data S2, we get the12

posterior distribution:

b.Tj S1)f2($21Tj
2 CT
h2(Th (TS2  T)()k=l hl(TklSlf2(S2iTk)
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I 0T (Tj)f (S ITj)f2(S2IT )

m

E 7T(Tk)fP(SlITk)
k=1

( )fl(S IT )f (S ITk)
m TOk 11 k 2 2 k

k=1 m

E (T )f (S IT.)
j=l 0 j 1 1

Tr0 (Tj f(S 1,S2 IT )

mZ f (Tk)f(SlS 2 ITk)

k=1

which is what we would have obtained by using the combined data from the two

reports and the initial prior distribution.

Perhaps we should note that the different levels of confidence A. and B.

for different types of weapon systems allow the model to reflect the fact that

an error in determining the identity of one type of weapon system may be more

costly than errors for other systems. These variable confidence levels fulfill

a purpose that corresponds to the loss function in the other models.

For any mathematical system to be valuable, it must have the confidence

of the user. If the intelligence consumers consistently believe that a system

is giving unreliable information, they are not apt to make use of it.
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The conceptual simplicity of the third model is of particular value in this

regard. The other two models might work extremely well, yet because they seem

to make consistently incorrect identifications, they might lose the confidence

of an operator who was not well acquainted with the subtleties of decision

theory. For example, suppose that the cost of mistakenly projecting a Foxbat

development is considerably greater than the cost of mistakenly projecting a

Flogger development -- perhaps because the effort required to counter the Fox-

bat is greater than that which would be required to counter the Flogger. Un-

der these circumstances it would be desirable to design a loss function for

the first two models such that any reasonable doubt as to which of these two

aircraft would be developed would result in a projection of a Flogger develop-

ment. While this procedure might be desirable, a user would soon come to the

conclusion that the system simply did not work. But the concept of different

confidence levels for different weapon systems, used in the third model,

should be easier for the user to grasp.

One other obvious algorithm for production of uncertainty estimates is

simply to eliminate possibilities as reports are received, in the hope that

only one outcome will be left after processing a small number of reports.

This is essentially the method used in the third model, since weapon systems

with zero or sufficiently low probabilities are automaticall4 eliminated from

consideration.
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C.5. POSSIBLE PROBLEMS WITH THE PRIOR DISTRIBUTION

i

Although the use of an a priori distribution seems generally appropriate,

there are several problems that might arise in connection with the distribu-

tion that should be noted.

Prior estimations of the mix of enemy weapon systems certainly provide

an important starting point for new estimates. It would be foolish to ignore

j this information, and all the models include the prior distributions in their

computations. That is, it would be foolish not to take into account the

fact that a given weapon system was very unlikely, if the source of the re-

port concerning that system was known to be somewhat uncertain. Additional

support for the use in the models of prior distributions from earlier esti-

mates is the fact that as long as the prior probabilities are not too near to 0

or 1, they will not significantly affect the eventual outcome of the final

probabilities.

Very small prior probabilities will, however, have a significant effect

on the final result. Suppose, for example, that the prior probability of

Soviet development of a particular type of aircraft is 0.01, and that two

reports are received which independently indicate that the Soviets are indeed

developing this type. Suppose further that both reports have a credibility

of 0.95. Then P (A 1E) 0.1610 (the posterior probability after receiving

the first report) and P (AIE 2 ) 
= 0.7848 (the posterior probability after

receiving both reports). Even here, the model does not give a seriously
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wrong result, but intuition tells us that two almost certain reports should

indicate an almost sure projection.

Now suppose we use the first probability as the prior distribution for

the second report, and discard the original prior. Then, after the above two

reports, P (AIE,) = 0.9972, which is closer to our intuitions concerning the

probability that the projection is correct.

The essential point here is that the enemy is likely to dc something

unusual. It should be to their advantage to do so. Thus, if the prior pro-

babilities are low, it might be well to use the probabilities from the first

report as the prior distribution, or to run the calculations using both

values, until co7-irmation or disconfirmation is obtained.

We noted above that, using the classical Bayes decision model, after a

posterior distribution is calculated, this distribution is used as the new

prior distribution for the next identification. In this way, the prior dis-

tribution would constantly be updated and reflect the actual mixture of

weapons that could be expected during the period of the projection. This

mixture, however, can be expected to change through time, as weapon systems

become obsolete and are retired. The prior probabilities must be modified to

reflect this process, in particular to reflect the need for constant revision

of estimates of the mix of Soviet and other force-.

In Figure C.4., a summary of the advantages and disavantages of the three

models is presented.
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C.6. AN ALTERNATIVE APPROACH

This subsection will present a detailed description of an alternative

computer system for aggregating uncertainties. Material in this subsection

has been adapted from John F. Lemmer, "A Return to Probabilities in Computer

Assisted Medical Diagnosis," PAR, 1977.

We believe that the problems which have arisen in the development of

systems for the aggregation of uncertainties can be successfully overcome, if

the intended application is known and the system is developed for effective

use in the application. The procedures to be described here are based on a

probability model in which each node of a graph (Figure C-4) can be interpreted

as an event, with the node at the top being the universal event. The sample

space may be considered to be a set of weapon systems, with the random experi-

ment to be the selection of a weapon system for which a projection is required.

The basic concept underlying these procedures is that of sequentially

"extending" a rmarginal distribution to include additional variables. The com-

plete distribution underlying the graph of Figure C-4 is a joint distribution

over the set of events defined by the nodes of the graph, G = a, b, c, d, e,

f, g, h, i, j. We shall denote this distribution by D(G). In extension, we

proceed from a distribution having as a variable only the universal event to

build gradually larger component marginal distributions (CMD) until the last

distribution is D(G) itself.

C-3.
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We can start extension by including any one of the nodes in the first

level of the graph. For example, assume that the value of p(a) is known.

Then CMD ({a}) = [p(-a), p(aZ), p(a ), p(a)].

We then continue in the sequence to CMD ({a, b, c}), CMD ((a, b, c, di),

etc. Difficulty arises if we do not know some of the values in the vector

needed to specify the CMD, but we will return to this point later.

By this extensions approach we overcome the problem that most known

probabilities are conditional probabilities. To see this, consider that in a

cycleless graph, such as Figure C-4, each node lies at some maximum depth.

For example, node h lies at maximum depth 3, although there is one path to it

that has only lengt'-. 2. By not extending a CMD to include any node at maximum

depth k until all nodes lying maximum depth £-l have been included in the CMD,

we can assure that the conditional probabilities for nodes at depth Z can be

converted to unconditional probabilities. For example, suppose for Figure C-4

we know p(i/e), p(i/f), and p(i/ef). Nodes e and f lie at a shallower maximum

depth than i. Thus p(e), p(f), and p(ef) can be computed from CMD ({ ...e, f,

.}) and the conditioning removed by multiplication.

It remains to be shown how the extension process can be carried out.

The method for extension will overcome the difficulties of both missing

probability information and inconsistent probability information. The method

also allows a subject matter specialist's intuition to be incorporated into

the distribution. Thus the extension procedure overcomes hree of the

problems listed in Section 10.
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Extension of a CMD to include another variable can be easily understood

in terms of a linear programming problem though actual implementation by this

method is too expensive to consider. Suppose we wish to extend CMD ({a,bf) to

CMD ({a, b, c}). Suppose we know CMD (ta,b}) in terms of the set of four

joint events {a, 1b, aF, ab}. Suppose p(a) =v,, p(aT) = v 1l p(Tb) =2 and

n(ab) = v When we include event c, the set of joint events grows to 8

elements, namely {aFc, abc, abc, abE, -Fc, arc, abc, abc}. The property that

we desire in the extended CMD is that

p(- = p(c-) + p(a-bc)

p(aF) = p(a-E") + p(Ibc) (1)

p(lb) = p(bE') + p(Ebc)

p(ab) = p(ab-) + p(abc)

If we consider the values of the probabilities for the joint events of

the extended distribution to be the variables of linear programming problem,

(1) is equivalent to the constraint set:

1 0 0 0 1 0 0 0 p (a 77) p(a)

0 1 0 0 0 1 0 0 p(aF-") p(aF) (2)

0 0 1 0 0 0 1 0 p(abc) p(7b)

0 0 0 1 0 0 0 1 p(ab-) p(ab)

p(a ac)

p ( a'c )

p(abc)

p(abc)
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If we know any marginal probability involving the event c, it will be a

linear function of the vector on the left side of (2). For example, if we

knew a value for p(ac), we would have

0 0 0 0 0 1 0 1 p(a-Tc) pcac) (3)

p ab-c)

p(a1c)

P ( 7c )

p(S'bc)

p1 kab,)

If there is a possibiiitv that ?kac) is inconsistent with-, the rest of our

data, or a subject matter specialist wants to guess at its value, we could

treat (3) as the criterion function for the set of linear constraints C). Bv

maximizing and minimizing this criterion, we coul d setermine the feasible
range for (3). From this feasi1-le range the exdert could select one, or we

could choose a value near our cuestionable value of p(ac). Then linear

programming techniques allow us to fin(! a feasible solution satisfying the

initial constraints and giving the selected v1':iu-,e for p(ac).

We can then repeat this ctep for eac:- piece of probability information

concerning c. Each time we re-,eat this stei the old criterion function

becomes the new member of the constraint set. Thus we eventualiy arrive at

s.t st



a feasible solution for CMD ({a, b, c}); that is probability values for

p(77b), p(a 7-7), p(TbT), p(abc), p(iac), p(ac), p(gbc), and p(abc). This

solution staisfies all supplied probability information.

Thus by the above procedures we have used marginal information concerning

c, which was originally conditional information, and which could have included

intuition of a subject matter specialist. There has been no reed to assume

the reports independent. Since all weapon systems are in the joint distribu-

tion after updating, we have probabilities for multiple systems as well as

single systems. And even though the distribution was incompletely specified,

we have succeeded in estimating it. (The case where no information, even

intuition, is available to choose a value for some constraints is covered

fully by Dr. Lemmer's full presentation.) No specific amount of probability

information is required. In fact, the methods are most applicable when some

variables are not contained in any completely known component marginal

distribution.

The only remaining problem is the size of the resulting distribution for

real problems and the amount of computational effort required to estimate it.

We have developed partial answers in this regard. Indeed the major portion

of Dr. Lemmer's work is devoted to this.

He has shown that under certain general condit-'ns there is no advantage

to computing the complete underlying distribution. Thus, it is shown that,

for Figure C-4, estimating CMD ({a, L, c, d, e, f }) and extending CMD

({d, e, f}) to CMD ( d, e, f, g, h, i, ) is equivalent to estimating P
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({a, b, c, d, e, f, g, h, i}). Remembering-that these are binary variables,

this means that only (2 6-1) + (2 7-2 -1) = 182 parameters must be estimated

instead of 511. Such savings grow exponentially with the number of variables

and the number of layers in the graph.

Efficient techniques have also been developed to replace the linear

programming procedures discussed above. If N is the number of variables

needed to specify the CMD, that is N = 2n where n is the number of events in

a CMD, linear programming techniques can be shown to be approximately N3 in

computational complexity. We have developed techniques for solving the par-

ticular extension problems which are about NlogN in complexity. The price

paid for this speedup is a fixed order of adding constraints during the

extension process.

Thus, we have developed techniques overcoming all the original problems

listed in Section 10. The actual procedures are too detailed and non-

intuitive to be presented here, but they are fully explained in Dr. Lemmer's

. •papers. They are quite easy to program and have been implemented, in part,

by John Franko of Rutgers University. With some further development, we

, "believe these techniques can be used to develop a computer-based system for

aggregating uncer'ainties.
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